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Abstract

Synthetic aperture radar (SAR) uses relative motion to produce fine resolution

images from microwave frequencies and is a useful tool for regular monitoring and

mapping applications. Unfortunately, if target distance is estimated poorly, then

phase errors are incurred in the data, producing a blurry reconstruction of the im-

age. In this thesis, we introduce a new multistatic methodology for determining

these phase errors from interferometry-inspired combinations of signals. To moti-

vate this, we first consider a more general problem called phase retrieval, in which

a signal is reconstructed from linear measurements whose phases are either unreli-

able or unavailable. We make significant theoretical progress on the phase retrieval

problem, to include characterizing injectivity in the complex case, devising the the-

ory of almost injectivity, and performing a stability analysis. We then apply certain

ideas from phase retrieval to resolve phase errors in SAR. Specifically, we use bistatic

techniques to measure relative phases, and then we apply a graph-theoretic phase

retrieval algorithm to recover the phase errors. We conclude by devising an image

reconstruction procedure based on this algorithm, and we provide simulations that

demonstrate stability to noise.

Keywords : Synthetic aperture radar, phase retrieval, angular synchronization, phase

errors, circulant graphs, informationally complete, quantum mechanics, unit norm

tight frames, computational complexity, Cramer-Rao lower bound
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About Phase: Synthetic Aperture Radar and

the Phase Retrieval Problem

I. Introduction

1.1 Synthetic aperture radar

Synthetic aperture radar (SAR) is a form of radar that uses relative motion to

produce fine resolution images from microwave signals. The usefulness of SAR stems

from its ability to overcome the shortcomings of competing remote imaging systems.

For instance, its day-or-night and all-weather capabilities give SAR an advantage

over both optical cameras and infrared imagers while maintaining comparable spatial

resolution [48]. As such, SAR is a particularly useful tool for regular monitoring and

mapping applications, some of which include the following:

Reconnaissance and surveillance. SAR imaging enables constant reconnais-

sance and surveillance, as it can operate at any time of day and in all weather condi-

tions, while offering sufficient resolution to distinguish terrain features and identify

man-made targets. Even moving targets may be identified, and so SAR is capable of

monitoring traffic patterns or tracking the movement of personnel and vehicles [2,74].

Topography. With the help of certain interferometric techniques, SAR can be

used to create accurate topographic maps and surface profiles. The extremely high

resolution of these techniques also enables detection of sudden seismic activity and

even volcanic bulging prior to the eruption of volcanoes [2, 48, 71].

Navigation and guidance. All-weather, autonomous navigation and guidance

may be accomplished using SAR by periodically imaging the surrounding terrain and

comparing to a stored reference image. This comparison then provides a means for

navigation update, and can even be used to accurately guide aircraft or munitions

to a target [74].
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Foliage and ground penetration. Due to its use of microwave frequencies, SAR

offers the capability of penetrating optically opaque materials, such as foliage and

topsoil. Thus, SAR enables monitoring of activity normally hidden by trees, brush,

or similar ground cover. Depending on soil conditions, SAR is also capable of imaging

underground targets of sufficient size at depths of up to several meters [2, 74].

Environmental monitoring. SAR is particularly sensitive to the dielectric prop-

erties of materials, making it useful for monitoring the condition of vegetation. Thus,

it is an important agricultural and environmental tool, capable of accurately moni-

toring crop characteristics, soil moisture levels, deforestation, ice flows, and oil spills.

In particular, SAR is effective at detecting oil spills over open water due to certain

backscatter effects [2, 74].

SAR works by implementing a moving radar platform that repeatedly transmits

a certain type of microwave signal and records the return signal reflected by the scene

of interest. Typical platforms used for SAR imaging include aircraft and satellite,

although each platform presents its own challenges during reconstruction [48]. Since

the radar source is in motion (relative to the target), repeatedly imaging a scene

provides information from a continuously changing perspective, and it is precisely

this introduction of perspective to the system that enables image reconstruction with

increased resolution.

In airborne spotlight-mode SAR, appropriate assumptions regarding the trans-

mitted signal (e.g., assumptions relating its frequencies to the speed of light) along

with assumptions about the scene (e.g., that elevations are relatively constant, so

the desired image is simply a function over R2) enable the return signal to be inter-

preted in terms of the Fourier transform of the target image. Indeed, under these

assumptions, the signal reflected back to the radar source is the transmitted signal

multiplied by a unit-modulus phase factor ω, and pointwise multiplied by a pre-

dictably modulated version of a one-dimensional slice of the Fourier transform of

the desired reflectivity function ρ : R2 → R, which describes certain electromagnetic

2



(a) (b) (c)

Figure 1: (a) Classical airborne spotlight-mode synthetic aperture radar (SAR). The aircraft transmits a signal and
receives a version of that signal which encodes a portion of the Fourier transform of the desired image. (b)
Based on the aircraft’s current position, it obtains the depicted slice of the Fourier transform. (c) After
obtaining a range of slices of the image’s Fourier transform, the slices are interpolated before inverting
the Fourier transform. Unfortunately, if the distance between the aircraft and the scene of interest is
estimated poorly, then a phase error is incurred in the corresponding slice. Different phase errors for
different slices accumulate to produce a blurry reconstruction of the desired image. Such phase errors
are typically estimated and removed using various post-processing techniques, and while these tend to
work rather well, they are often ad hoc, requiring additional assumptions about the target scene, and they
sometimes fail unexpectedly. One of the contributions of this thesis is the introduction of a new multistatic
methodology for determining these phase errors from interferometry-inspired combinations of signals.

characteristics of the scene [48] (cf. Fact 5.1 in this thesis). Specifically, if one trans-

mits and receives a signal from a point (x, y) to image a scene which is centered at the

origin, then the received signal encodes the portion of the scene’s two-dimensional

Fourier transform Fρ that lies on the line which passes through both (x, y) and

the origin (see Figure 1(a) and (b) for an illustration). In practice, such portions

are interpolated to reconstruct the entire two-dimensional Fourier transform, from

which the image may be easily obtained [48]. Unfortunately, an issue arises when

using this approach, namely, uncertainty in the target distance (that is, the distance

from the radar source to the target scene). Indeed, the phase factor ω which appears

in the received signal is a sensitive function of target distance. Furthermore, small

fluctuations in this distance are quite common due to factors such as aircraft per-

formance, weather, wind, and pilot skill [18]. Overall, any noise in the estimates of

these distances creates phase errors in the recorded signals, and since the phase error

will be different for each slice of the Fourier transform, the image becomes distorted

when taking the inverse Fourier transform.
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The effect of phase errors is pointwise multiplication in the Fourier domain,

meaning the desired image is blurred in the spatial domain, typically enough so

that objects of interest within the target scene are indiscernible (see Figure 1(c),

for example). Although there are methods for dealing with phase errors during

post-processing (e.g., autofocus algorithms [63]), and many of these certainly pro-

duce outstanding results, it is desirable to eliminate the problem prior to image

reconstruction. Indeed, many algorithms for correcting phase errors use ad hoc

techniques, require further assumptions on the target scene, and may fail unexpect-

edly [37,44,54,79].

It is reasonable to expect that the phase error problem in SAR could have a

more systematic solution if only additional signal data were available for analysis.

The desire for more information motivates the use of multistatic radar systems, in

which multiple radar sources, separated by distances comparable to any single target-

to-source distance, are capable of both transmitting and receiving signals reflected

by a common target. These systems enable multiple measurements to be taken

from varying perspectives, and when combined, these additional measurements of-

ten improve resolution and even combat some of the weaknesses of monostatic radar

systems [71]. To date, multistatic techniques have been used for various applica-

tions, such as tracking and triangulation, using both stationary and mobile radar

sources [59, 64, 71]. For instance, antenna “swarms” are a common airborne ap-

plication of multistatic radar for target tracking in which multiple radar platforms

with independent flight paths are capable of both transmitting and receiving sig-

nals to and from a (possibly moving) target [13, 36, 71]. One way of realizing these

swarms is to mount radar receivers on a team of remotely piloted aircraft (RPAs);

in such multistatic systems, a common radar source transmits a signal to a target

while each RPA records time-delay and Doppler measurements of the reflected signal

which, when combined, provide target tracking that has been shown to outperform
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traditional, static radar arrays [13,33]. Even passive sources like radio and television

broadcast signals can be incorporated in a multistatic system [15,59,64].

The techniques of monostatic SAR described earlier can be naturally extended

to the bistatic and multistatic settings [48]. As we will demonstrate, the introduction

of additional radar transmitters and receivers allows one to observe interferometry-

inspired combinations of the phase errors we seek to remove. We will then apply

ideas from a related, well-studied problem called phase retrieval to estimate the

phase errors from these combinations.

1.2 The phase retrieval problem

The phase error problem in SAR can be viewed as an instance of a more

general problem called phase retrieval, in which one attempts to reconstruct a signal

when phase information is either unreliable (as in the case of SAR) or completely

lost during some linear measurement process. Indeed, given slices of the Fourier

transform, each multiplied by a different unknown phase factor, one can simply ignore

any phase information by taking pointwise absolute values, effectively reducing the

phase error problem in SAR to the most common problem in phase retrieval: recover

an image from the pointwise absolute value of its Fourier transform. This reduction

implies that any method of phase retrieval is also a solution to the phase error

problem.

We note that phase retrieval is interesting in its own right, as it has many

applications other than SAR:

Coherent diffractive imaging. A common technique for imaging a nanoscale

object is to strike it with a highly coherent beam of X-rays and record the resultant

diffraction pattern using a photon counting device. This diffraction pattern is the

Fourier transform of the material density profile of the object. However, counting

photons only provides the intensity of the diffraction pattern, and so recovering the
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image first requires obtaining the lost phase information via phase retrieval [19, 60,

76,78].

Optics. This application enjoys various instances of phase retrieval:

(i) In astronomy, imaging celestial objects like stars using a lens-based optical sys-

tem requires computing the associated pupil distribution (i.e., the distribution

of light that is allowed to exit the optical system). Since such systems only de-

tect the pointwise absolute value of the Fourier transform of the pupil function,

one must first recover the phases before building an image of the object [91].

(ii) When producing a high-resolution image of a radiating object, certain interfer-

ometric techniques can be used to approximate the object’s spatial coherence

function, which is the Fourier transform of the object map (i.e., the spatial

intensity of the radiation). Unfortunately, the phase of this function is quite

difficult (and often impossible) to estimate accurately, and so is typically dis-

carded in favor of estimation by phase retrieval [40].

(iii) Soon after NASA launched its Hubble Space Telescope, it was discovered that

its primary mirror suffered from a large spherical aberration (i.e., phase er-

rors resulting from light striking the mirror near its edge). To determine the

proper correction, the extent of the aberration was established by constructing

the pupil function from the associated point spread function (which measures

the intensity of the Fourier transform of the pupil function) using phase re-

trieval [55].

Quantum state tomography. When measuring a pure quantum state using a

positive operator–valued measure (POVM) of rank-1 elements, the distribution of

the random outcome of the measurement can be expressed in terms of the state’s

intensity measurements with the Parseval frame elements which generate the POVM.

Since repeated measurements of the state produce an empirical estimate of this

distribution, phase retrieval can be used to identify the state [56, 57,62].

6



Speech processing. In signal processing for speech applications, a common

method of denoising is to take the short-time Fourier transform (STFT) and perform

a smoothing operation on the magnitudes of the coefficients. Instead of inverting

the STFT using the (noisy) unaltered phases of the coefficients, one can recover the

denoised version of the signal by first discarding the phases and then reconstructing

with phase retrieval [8, 85].

Although there are many applications of phase retrieval, the task is often im-

possible. For instance, intensity measurements with the identity basis effectively

discard the phase information of a signal’s entries, and so this measurement process

is not at all injective; similarly, the power spectrum discards the phases of Fourier

coefficients. This fact has led many researchers to invoke a priori knowledge of

the desired signal, since intensity measurements might be injective when restricted

to a smaller signal class. This is frequently the case in optics applications, since

the pupil distribution is only supported within the aperture of the optical system;

the resultant compact-support constraint is often sufficient to make the intensity

measurement mapping injective. The introduction of such information has led to

various ad hoc phase retrieval algorithms, and while some have found success (e.g.,

in correcting the Hubble Space Telescope), such algorithms often fail to work un-

expectedly. (The situation is not unlike the state of the art for correcting phase

errors in SAR.) Overall, algorithms produced in this way typically lack practical

performance guarantees.

Thankfully, there is an alternative approach to phase retrieval, as introduced

in 2006 by Balan, Casazza and Edidin [8]: Instead of restricting to a smaller signal

class, seek injectivity by designing a larger ensemble of measurement vectors. (This

approach is an underlying theme throughout this thesis.) Unbeknownst to Balan et

al. at the time, the quantum mechanics community was already familiar with this

idea (for quantum state tomography [56, 57]), but presenting the idea to the signal
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processing community led to a flurry of research in search of practical phase retrieval

guarantees [3, 5, 7, 9, 24–27,43,49,88,90].

At this point, it is helpful to introduce some notation. Given a collection

of measurement vectors Φ = {ϕn}Nn=1 in V = RM or CM , which we identify with

the M × N matrix whose columns form the collection, we consider the intensity

measurement process defined by

(A(x))(n) := |〈x, ϕn〉|2.

For example, in the case of phase retrieval with the Fourier transform, each ϕn is a

complex sinusoid and Φ∗ is the Fourier transform. Note that A(x) = A(y) whenever

y = cx for some scalar c of unit-modulus. As such, the mapping A : V → RN is

not injective. To resolve this (technical) issue, throughout this thesis we consider

sets of the form V/S, where V is a vector space and S is a multiplicative subgroup

of the field of scalars. By this notation, we mean to identify vectors x, y ∈ V for

which there exists a scalar c ∈ S such that y = cx; we write y ≡ x mod S to convey

this identification. Most (but not all) of the time, V/S is either RM/{±1} or CM/T

(here, T is the complex unit circle), and we view the intensity measurement process

as a mapping A : V/S → RN ; it is in this way that we will consider the measurement

process to be injective or stable.

In order to perform phase retrieval successfully, we therefore seek to understand

the properties of the measurement ensemble Φ that enable recovery of a signal x from

measurements of the form A(x). This naturally leads to the following question:

The Phase Retrieval Problem. What are necessary and sufficient conditions for

efficient and stable recovery of a signal from its intensity measurements?

As a noteworthy stride toward solving the phase retrieval problem, Candès,

Strohmer and Voroninski [27] viewed intensity measurements as Hilbert-Schmidt in-

ner products between rank-1 operators, and they applied certain intuition from com-
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pressed sensing to stably reconstruct the desired M -dimensional signal with semidef-

inite programming; similar alternatives and refinements have since emerged [24, 34,

43, 89]. Another alternative exploits the polarization identity to discern relative

phases between certain intensity measurements; this method uses an expander graph

along with a new algorithm called angular synchronization to quickly solve certain

instances of phase retrieval, and it comes with a similar stability guarantee [3, 9].

One can also formulate phase retrieval in terms of MaxCut, and solvers for this

formulation are equivalent to a popular solver (PhaseLift) for the matrix recovery

formulation [88, 90]. In this same line of research, a new methodology for coherent

diffractive imaging emerged [24]: Rather than attempting phase retrieval with pos-

sibly incomplete information taken from a single exposure, take multiple exposures

of the same object using different diffraction gratings. Such a process is capable of

producing complete information and is associated with provably efficient (and ap-

parently stable) phase retrieval algorithms [9,26]. This approach inspires the use of

multistatic SAR in this thesis as a means of producing complete information for the

phase error problem.

1.3 Overview

This thesis offers two main contributions: (i) we make significant theoretical

progress on the phase retrieval problem, and (ii) we apply certain ideas from phase re-

trieval to resolve phase errors in synthetic aperture radar. We begin in Chapter II by

examining what it means for an ensemble of intensity measurements to be injective.

In particular, we discuss the characterization of injectivity in the real case as intro-

duced by Balan, Casazza and Edidin [8], i.e., the complement property, and provide

the first known characterization of injectivity in the complex case (Theorem 2.3).

Next, we make a rather surprising identification: that intensity measurements are

injective in the complex case precisely when the corresponding phase-only measure-

ments are injective in some sense (Theorem 2.4). We then use this identification to
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prove the necessity of the complement property for injectivity (Theorem 2.6). Later,

we formulate a conjecture that 4M − 4 intensity measurements are necessary and

sufficient for injectivity in the complex case, as well as discuss the cases for which

the conjecture is known to hold; we also prove several such cases. Specifically, for

the proof of the case M = 3 we introduce a new test for injectivity, which we then

use to verify the injectivity of a certain quantum mechanics–inspired measurement

ensemble, thereby suggesting a new refinement of Wright’s conjecture from [87] (see

Conjecture 2.14). The chapter concludes with an explicit construction of 4M − 4

intensity measurements which yield injectivity, the second known injective ensem-

ble of this size (the first is due to Bodmann and Hammen [17]). Bodmann and

Hammen [17] leverage the Dirichlet kernel and the Cayley map to prove injectivity

of their ensemble, but it is unclear whether phase retrieval is algorithmically feasi-

ble from their ensemble. By contrast, for the ensemble in this thesis, we use basic

ideas from harmonic analysis over cyclic groups to devise a corresponding phase re-

trieval algorithm, and we demonstrate injectivity in Theorem 2.20 by proving that

the algorithm recovers any noiseless signal up to global phase.

In Chapter III, we devise a theory of ensembles for which the corresponding

intensity measurements are “almost” injective, that is, are injective on a set of signals

that is dense in CM . Here, we focus on the real case, meaning phase retrieval is up

to a global sign factor ω = ±1, and our approach is inspired by the characterization

of injectivity in the real case by Balan, Casazza and Edidin [8]. After characterizing

almost injectivity in the real case, we find a particularly satisfying sufficient condition

for almost injectivity: that the ensemble of measurement vectors forms a unit norm

tight frame with relatively prime dimensions (Theorem 3.7). Characterizing almost

injectivity in the complex case remains an open problem. The chapter concludes

with a discussion of the computational limits of phase retrieval, in which we consider

algorithmic phase retrieval in the real case using M + 1 almost injective intensity

measurements. Specifically, we show that phase retrieval in this case is NP-hard
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by reduction from the subset sum problem (Theorem 3.9). The hardness of phase

retrieval in this minimal case suggests a new problem for phase retrieval: What is

the smallest C for which there exists a family of ensembles of size CM + o(M) such

that phase retrieval can be performed in polynomial time?

We devote Chapter IV to stability in phase retrieval. Here, we start by focusing

on the real case, for which we give upper and lower Lipschitz bounds of the intensity

measurement mapping in terms of singular values of submatrices of the measure-

ment ensemble (Lemma 4.3 and Theorem 4.5); this suggests a new matrix condition

called the strong complement property, which strengthens the complement property

of Balan et al. [8] and bears some resemblance to the restricted isometry property of

compressed sensing [23]. As we will discuss, our result corroborates the intuition that

localized frames fail to yield stability. We then show that Gaussian random measure-

ments satisfy the strong complement property with high probability (Theorem 4.7),

which nicely complements certain results of Eldar and Mendelson [49]. In particular,

we find an explicit, intuitive relation between the Lipschitz bounds and the number

of intensity measurements per dimension (see Figure 3). Finally, we present results

in both the real and complex cases using a stochastic noise model, much like Balan

did for the real case in [5]; here, we leverage Cramer-Rao lower bounds to identify

stability with stronger versions of the injectivity characterizations (see Theorems 4.8

and 4.10).

Chapter V finally returns to the phase error problem in synthetic aperture

radar. By incorporating techniques from bistatic radar, we formulate the phase error

problem in terms of relative phases, bearing some resemblance to those obtained

from interferometric intensity measurements used for phase retrieval by Alexeev,

Bandeira, Fickus and Mixon [3]. In particular, Alexeev et al. leverage an algorithm

known as angular synchronization [84] to recover a set of phases from their relative

phase measurements, which motivates a graph theoretic approach to the phase error

problem in SAR. Using this approach, we then formulate phase error recovery as a

11



feasibility problem, solutions to which are only unique up to a modulation and global

phase. We conclude by constructing an algorithm that extracts phase errors from

multistatic SAR data using certain graphs that can be obtained from particular

arrangements of different numbers of aircraft. Our two-step image reconstruction

algorithm first uses an iterative form of angular synchronization to determine the

phase errors up to a modulation and a single global phase factor, and then maximizes

the image’s total variation to determine the appropriate modulation and phase factor.

Simulations with random phase error data are provided, with which it is shown that

the algorithm exhibits stability in terms of the number of cycles contained in the

parent graph. In particular, the number of cycles is directly related to the number of

aircraft used in the multistatic system, and the simulations suggest that the phase

error problem can be solved using only a few aircraft (e.g., as few as five for a graph

of 101 vertices).

We conclude in Chapter VI with some discussion and ideas for future work.

For the record, the material presented in Chapters II, III, and IV also appears in

three peer-reviewed publications. Sections 2.1 and 2.2, as well as Chapter IV and

Appendix A have appeared in the proceedings of the 10th International Conference

on Sampling Theory and Applications [10], and a journal version of the conference

paper has been accepted for publication in Applied and Computational Harmonic

Analysis [11]. Also, Section 2.3 and Chapter III appear in a journal article which

has been accepted for publication in Linear Algebra and its Applications [52].
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II. Injective intensity measurements and

the 4M − 4 conjecture

An underlying theme in the phase retrieval problem is determining necessary and

sufficient conditions for the intensity measurement process A to be injective. Indeed,

injectivity ensures complete information for signal reconstruction, and so these con-

ditions are important specifications for the intensity measurement process. Recall

that, given a collection of measurement vectors Φ = {ϕn}Nn=1 in V = RM or CM , the

intensity measurement process A cannot be injective if viewed as a mapping from V

into RN . For this reason, we identify vectors x, y ∈ V for which there exists a scalar

c ∈ S such that y = cx, and we view the intensity measurement process as a map-

ping A : V/S → RN , where S = {±1} or T. In this chapter, we will examine what

it means for an ensemble of intensity measurements to be injective. We characterize

injectivity in both the real and complex cases before focusing on injectivity with the

absolute minimum number of intensity measurements. This leads to the conjecture

that 4M − 4 intensity measurements are necessary and sufficient for injectivity in

the complex case (Conjecture 2.9). The remainder of the chapter is dedicated to

making progress on this conjecture, including a deterministic construction of 4M−4

intensity measurements that yield injectivity.

2.1 Injectivity and the complement property

Phase retrieval is impossible without injective intensity measurements. As

such, we desire necessary and sufficient conditions on the size of an ensemble of M -

dimensional measurement vectors Φ = {ϕn}Nn=1 such that the intensity measurements

{|〈x, ϕn〉|2}Nn=1 enable successful recovery of the signal x (up to a global phase factor).

In their seminal work on phase retrieval [8], Balan, Casazza and Edidin introduce

the following property to analyze injectivity:
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Definition 2.1. An ensemble Φ = {ϕn}Nn=1 in RM (CM) satisfies the complement

property (CP) if for every S ⊆ {1, . . . , N}, either {ϕn}n∈S or {ϕn}n∈Sc spans RM

(CM).

Here and throughout, Sc denotes the set {1, . . . , N} \ S. In the real case, the

complement property is characteristic of injectivity, as demonstrated in [8]. The

proof of this result is provided below; it contains several key insights which will be

applied later.

Theorem 2.2. Consider Φ = {ϕn}Nn=1 ⊆ RM and the mapping A : RM/{±1} → RN

defined by (A(x))(n) := |〈x, ϕn〉|2. Then A is injective if and only if Φ satisfies the

complement property.

Proof. We will prove both directions by obtaining the contrapositives.

(⇒) Assume that Φ is not CP. Then there exists S ⊆ {1, . . . , N} such that

neither {ϕn}n∈S nor {ϕn}n∈Sc spans RM . This implies that there are nonzero vectors

u, v ∈ RM such that 〈u, ϕn〉 = 0 for all n ∈ S and 〈v, ϕn〉 = 0 for all n ∈ Sc. For

each n, we then have

|〈u± v, ϕn〉|2 = |〈u, ϕn〉|2 ± 2 Re〈u, ϕn〉〈v, ϕn〉+ |〈v, ϕn〉|2 = |〈u, ϕn〉|2 + |〈v, ϕn〉|2.

Since |〈u + v, ϕn〉|2 = |〈u − v, ϕn〉|2 for every n, we have A(u + v) = A(u − v).

Moreover, u and v are nonzero by assumption, and so u+ v 6= ±(u− v).

(⇐) Assume that A is not injective. Then there exist vectors x, y ∈ RM such

that x 6= ±y and A(x) = A(y). Taking S := {n : 〈x, ϕn〉 = −〈y, ϕn〉}, we have

〈x + y, ϕn〉 = 0 for every n ∈ S. Otherwise when n ∈ Sc, we have 〈x, ϕn〉 = 〈y, ϕn〉

and so 〈x − y, ϕn〉 = 0. Furthermore, both x + y and x − y are nontrivial since

x 6= ±y, and so neither {ϕn}n∈S nor {ϕn}n∈Sc spans RM .

Note that in [8] it is erroneously stated that the first part of the above proof

also gives necessity of CP for injectivity in the complex case. Indeed, the proof
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demonstrates that u+v 6= ±(u−v), but fails to establish that u+v 6≡ (u−v) mod T;

for instance, it could very well be the case that u + v = i(u− v), and so injectivity

would not be violated in the complex case. A correct proof of the result in question

is provided later (Theorem 2.6). In the meantime, we characterize injectivity in the

complex case:

Theorem 2.3. Consider Φ = {ϕn}Nn=1 ⊆ CM and the mapping A : CM/T → RN

defined by (A(x))(n) := |〈x, ϕn〉|2. Viewing {ϕnϕ∗nu}Nn=1 as vectors in R2M , denote

S(u) := spanR{ϕnϕ∗nu}Nn=1. Then the following are equivalent:

(a) A is injective.

(b) dimS(u) ≥ 2M − 1 for every u ∈ CM \ {0}.

(c) S(u) = spanR{iu}⊥ for every u ∈ CM \ {0}.

Before proving this theorem, note that unlike the characterization in the real

case, it is not clear whether this characterization can be tested in finite time; instead

of being a statement about all (finitely many) partitions of {1, . . . , N}, this is a

statement about all u ∈ CM \ {0}. However, we can view this characterization as an

analog to the real case in some sense: In the real case, the complement property is

equivalent to having span{ϕnϕ∗nu}Nn=1 = RM for all u ∈ RM \ {0}. As the following

proof makes precise, the fact that {ϕnϕ∗nu}Nn=1 fails to span all of R2M is rooted in

the fact that more information is lost with phase in the complex case.

Proof of Theorem 2.3. (a) ⇒ (c): Suppose A is injective. We need to show that

{ϕnϕ∗nu}Nn=1 spans the set of vectors orthogonal to iu. Here, orthogonality is with

respect to the real inner product, which can be expressed as 〈a, b〉R = Re〈a, b〉. Note

that

|〈u± v, ϕn〉|2 = |〈u, ϕn〉|2 ± 2 Re〈u, ϕn〉〈ϕn, v〉+ |〈v, ϕn〉|2,
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and so subtraction gives

|〈u+ v, ϕn〉|2 − |〈u− v, ϕn〉|2 = 4 Re〈u, ϕn〉〈ϕn, v〉 = 4〈ϕnϕ∗nu, v〉R. (1)

In particular, if the right-hand side of (1) is zero, then injectivity implies that there

exists some ω of unit-modulus such that u + v = ω(u − v). Since u 6= 0, we know

ω 6= −1, and so rearranging gives

v = −
(1− ω

1 + ω

)
u = −(1− ω)(1 + ω)

|1 + ω|2
u =

2 Imω

|1 + ω|2
iu.

This means S(u)⊥ ⊆ spanR{iu}. To prove spanR{iu} ⊆ S(u)⊥, take v = αiu for

some α ∈ R and define ω := 1+αi
1−αi

, which necessarily has unit-modulus. Then

u+ v = u+ αiu = (1 + αi)u =
1 + αi

1− αi
(u− αiu) = ω(u− v).

Thus, the left-hand side of (1) is zero, meaning v ∈ S(u)⊥.

(b) ⇔ (c): First, (b) immediately follows from (c) since dim(spanR{iu}) = 1

for all u ∈ CM \ {0}. For the other direction, note that iu is necessarily orthogonal

to every ϕnϕ
∗
nu:

〈ϕnϕ∗nu, iu〉R = Re〈ϕnϕ∗nu, iu〉 = Re〈u, ϕn〉〈ϕn, iu〉 = −Re i|〈u, ϕn〉|2 = 0.

Thus, spanR{iu} ⊆ S(u)⊥ for all nonzero u. Since, by (b), dimS(u)⊥ ≤ 1, this then

gives (c).

(c)⇒ (a): This portion of the proof is inspired by Mukherjee’s analysis in [80].

Suppose A(x) = A(y). If x = y, we are done. Otherwise, x− y 6= 0, and so we may

apply (c) to u = x− y. First, note that

〈ϕnϕ∗n(x− y), x+ y〉R = Re〈ϕnϕ∗n(x− y), x+ y〉 = Re(x+ y)∗ϕnϕ
∗
n(x− y),
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and so expanding gives

〈ϕnϕ∗n(x− y), x+ y〉R = Re
(
|ϕ∗nx|2 − x∗ϕnϕ∗ny + y∗ϕnϕ

∗
nx− |ϕ∗ny|2

)
= Re

(
− x∗ϕnϕ∗ny + x∗ϕnϕ∗ny

)
= 0.

Since x + y ∈ S(x − y)⊥ = spanR{i(x − y)}, there exists α ∈ R such that x + y =

αi(x− y), and so rearranging gives y = 1−αi
1+αi

x, meaning y ≡ x mod T.

Theorem 2.3 leaves a lot to be desired; it is still unclear what it takes for a

complex ensemble to yield injective intensity measurements. While in pursuit of a

more clear understanding, we established the following bizarre characterization: A

complex ensemble yields injective intensity measurements precisely when it yields

injective phase-only measurements (in some sense). This is made more precise in

the following theorem statement:

Theorem 2.4. Consider Φ = {ϕn}Nn=1 ⊆ CM and the mapping A : CM/T → RN

defined by (A(x))(n) := |〈x, ϕn〉|2. Then A is injective if and only if the following

statement holds: If for every n = 1, . . . , N , either arg(〈x, ϕn〉2) = arg(〈y, ϕn〉2) or

one of the sides is not well-defined, then x = 0, y = 0, or y ≡ x mod R \ {0}.

Proof. By Theorem 2.3, A is injective if and only if

∀x ∈ CM \ {0}, spanR{ϕnϕ∗nx}Nn=1 = spanR{ix}⊥. (2)

Taking orthogonal complements of both sides, note that regardless of x ∈ CM \ {0},

we know spanR{ix} is necessarily a subset of (spanR{ϕnϕ∗nx}Nn=1)⊥, and so (2) is

equivalent to

∀x ∈ CM \ {0}, Re〈ϕnϕ∗nx, iy〉 = 0 ∀n = 1, . . . , N

=⇒ y = 0 or y ≡ x mod R \ {0}.
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Thus, we need to determine when Im〈x, ϕn〉〈y, ϕn〉 = Re〈ϕnϕ∗nx, iy〉 = 0. We claim

that this is true if and only if arg(〈x, ϕn〉2) = arg(〈y, ϕn〉2) or one of the sides is

not well-defined. To see this, we substitute a := 〈x, ϕn〉 and b := 〈y, ϕn〉. Then to

complete the proof, it suffices to show that Im ab = 0 if and only if arg(a2) = arg(b2),

a = 0, or b = 0.

(⇐) If either a or b is zero, the result is immediate. Otherwise, if

2 arg(a) = arg(a2) = arg(b2) = 2 arg(b),

then 2π divides 2(arg(a)− arg(b)), and so arg(ab) = arg(a)− arg(b) is a multiple of

π. This implies that ab ∈ R, and so Im ab = 0.

(⇒) Suppose Im ab = 0. Taking the polar decompositions a = reiθ and b = seiφ,

we equivalently have that rs sin (θ − φ) = 0. Certainly, this can occur whenever

r or s is zero, i.e., a = 0 or b = 0. Otherwise, a difference formula then gives

sin θ cosφ = cos θ sinφ. From this, we know that if θ is an integer multiple of π/2,

then φ is as well, and vice versa, in which case

arg(a2) = 2 arg(a) = π = 2 arg(b) = arg(b2).

Else, we can divide both sides by cos θ cosφ to obtain tan θ = tanφ, from which it

is evident that θ ≡ φ mod π, and so arg(a2) = 2 arg(a) = 2 arg(b) = arg(b2).

This notion of injective phase-only measurements is similar to the idea of par-

allel rigidity in certain location estimation problems (for example, see [12] and ref-

erences therein). It would be interesting to further investigate this relationship,

although we will not do so here; at the very least, it is rather striking that injectivity

is equivalent in both settings. We will actually use this result to (correctly) prove

the necessity of CP for injectivity. First, we need the following lemma, which is

interesting in its own right:
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Lemma 2.5. Consider Φ = {ϕn}Nn=1 ⊆ CM and the mapping A : CM/T → RN de-

fined by (A(x))(n) := |〈x, ϕn〉|2. If A is injective, then the mapping B : CM/{±1} →

CN defined by (B(x))(n) := 〈x, ϕn〉2 is also injective.

Proof. Suppose A is injective. Then we have the following facts (one by definition,

and the other by Theorem 2.4):

(i) If |〈x, ϕn〉|2 = |〈y, ϕn〉|2 for all n = 1, . . . , N , then y ≡ x mod T.

(ii) If, for every n ∈ {1, . . . , N}, either arg(〈x, ϕn〉2) = arg(〈y, ϕn〉2) or one of the

sides is not well-defined, then x = 0, y = 0, or y ≡ x mod R \ {0}.

Now suppose we have 〈x, ϕn〉2 = 〈y, ϕn〉2 for all n = 1, . . . , N . Then their moduli

and arguments are also equal, and so (i) and (ii) both apply. Of course, y ≡ x mod T

implies x = 0 if and only if y = 0. Otherwise both are nonzero, in which case there

exists ω ∈ T ∩ R \ {0} = {±1} such that y = ωx. In either case, y ≡ x mod {±1},

so B is injective.

Leveraging the injectivity of B modulo {±1}, we may now extend the necessity

of CP for injectivity to complex ensembles:

Theorem 2.6. Consider Φ = {ϕn}Nn=1 ⊆ CM and the mapping A : CM/T → RN

defined by (A(x))(n) := |〈x, ϕn〉|2. If A is injective, then Φ satisfies the complement

property.

Proof. Recall that if A is injective, then so is the mapping B of Lemma 2.5. There-

fore, it suffices to show that Φ is CP if B is injective. To complete the proof, we will

obtain the contrapositive (note the similarity to the proof of Theorem 2.2). Sup-

pose Φ is not CP. Then there exists S ⊆ {1, . . . , N} such that neither {ϕn}n∈S nor

{ϕn}n∈Sc spans CM . This implies that there are nonzero vectors u, v ∈ CM such that

〈u, ϕn〉 = 0 for all n ∈ S and 〈v, ϕn〉 = 0 for all n ∈ Sc. For each n, we then have

〈u± v, ϕn〉2 = 〈u, ϕn〉2 ± 2〈u, ϕn〉〈v, ϕn〉+ 〈v, ϕn〉2 = 〈u, ϕn〉2 + 〈v, ϕn〉2.
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Since 〈u+v, ϕn〉2 = 〈u−v, ϕn〉2 for every n, we have B(u+v) = B(u−v). Moreover,

u and v are nonzero by assumption, and so u+ v 6= ±(u− v).

Note that the complement property is necessary but not sufficient for injectiv-

ity. To see this, consider the measurement vectors (1, 0), (0, 1) and (1, 1) in C2. These

certainly satisfy the complement property, but A((1, i)) = (1, 1, 2) = A((1,−i)), de-

spite the fact that (1, i) 6≡ (1,−i) mod T; in general, real measurement vectors fail

to yield injective intensity measurements in the complex setting since they do not

distinguish complex conjugates. Indeed, we have yet to find a “good” sufficient con-

dition for injectivity in the complex case. As an analogy for what we really want,

consider the notion of full spark : An ensemble {ϕn}Nn=1 ⊆ RM is said to be full

spark if every subcollection of M vectors spans RM . It is easy to see that full spark

ensembles with N ≥ 2M − 1 necessarily satisfy the complement property (thereby

implying injectivity in the real case), since in this case

min
S⊆{1,2,...,N}

{
max{|S|, |Sc|}

}
= M,

and so it is guaranteed that one of the sets {ϕn}n∈S or {ϕn}n∈Sc spans. Furthermore,

the notion of full spark is simple enough to admit deterministic constructions [4,81].

Deterministic measurement ensembles are particularly desirable for the complex case,

and so finding a good sufficient condition for injectivity is an important problem that

remains open.

2.2 Towards a rank-nullity theorem for phase retrieval

If one thinks of a matrix Φ as being built one column at a time, then the

rank-nullity theorem states that each column contributes to either the column space

or the null space. If the columns are then used as linear measurement vectors (say

we take measurements y = Φ∗x of a vector x), then the column space of Φ gives

the subspace that is actually sampled, and the null space captures the algebraic

20



nature of the measurements’ redundancy. Therefore, an efficient sampling of an

entire vector space would apply a matrix Φ with a small null space and large column

space (e.g., an invertible square matrix). How do we find such a sampling with

intensity measurements? The following makes this question more precise:

Problem 2.7. For any dimension M , what is the smallest number N∗(M) of injec-

tive intensity measurements, and how do we design such measurement vectors?

To be clear, this problem was completely solved in the real case by Balan,

Casazza and Edidin [8]. Indeed, Theorem 2.2 immediately implies that 2M − 2

intensity measurements are necessarily not injective, and furthermore that 2M − 1

measurements are injective if and only if the measurement vectors are full spark. As

such, we will focus our attention to the complex case.

In the complex case, Problem 2.7 has some history in the quantum mechan-

ics literature. For example, [87] presents Wright’s conjecture that three observables

suffice to uniquely determine any pure state. In phase retrieval parlance, the conjec-

ture states that there exist unitary matrices U1, U2 and U3 such that Φ = [U1 U2 U3]

yields injective intensity measurements. Note that Wright’s conjecture actually im-

plies that N∗(M) ≤ 3M−2; indeed, U1 determines the norm (squared) of the signal,

rendering the last column of both U2 and U3 unnecessary. Finkelstein [56] later

proved that N∗(M) ≥ 3M − 2; combined with Wright’s conjecture, this led many

to believe that N∗(M) = 3M − 2 (for example, see [24]). However, both this and

Wright’s conjecture were recently disproved in [62], in which Heinosaari, Mazzarella

and Wolf invoked embedding theorems from differential geometry to prove that

N∗(M) ≥


4M − 2α(M − 1)− 3 for all M

4M − 2α(M − 1)− 2 if M is odd and α(M − 1) = 2 mod 4

4M − 2α(M − 1)− 1 if M is odd and α(M − 1) = 3 mod 4,

(3)
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where α(M−1) ≤ log2(M) is the number of 1’s in the binary representation of M−1.

By comparison, Balan, Casazza and Edidin [8] proved that N∗(M) ≤ 4M − 2, and

so we at least have the asymptotic expression N∗(M) = (4 + o(1))M .

At this point, we should clarify some intuition for N∗(M) by explaining the

nature of these best known lower and upper bounds. First, the lower bound (3)

follows from an older result that complex projective space CPn does not smoothly

embed into R4n−2α(n) (and other slight refinements which depend on n); this is due to

Mayer [75], but we highly recommend James’s survey on the topic [66]. To prove (3)

from this, suppose A : CM/T → RN were injective. Then E defined by E(x) :=

A(x)/‖x‖2 embeds CPM−1 into RN , and as Heinosaari et al. show, the embedding is

necessarily smooth; considering A(x) is made up of rather simple polynomials, the

fact that E is smooth should not come as a surprise. As such, the nonembedding

result produces the best known lower bound. To evaluate this bound, first note

that Milgram [77] constructs an embedding of CPn into R4n−α(n)+1, establishing the

importance of the α(n) term, but the constructed embedding does not correspond

to an intensity measurement process. In order to relate these embedding results to

our problem, consider the real case: It is known that for odd n ≥ 7, real projective

space RPn smoothly embeds into R2n−α(n)+1 [86], which means the analogous lower

bound for the real case would necessarily be smaller than

2(M − 1)− α(M − 1) + 1 = 2M − α(M − 1)− 1 < 2M − 1.

This indicates that the α(M − 1) term in (3) might be an artifact of the proof

technique, rather than of N∗(M).

There is also some intuition to be gained from the upper bound N∗(M) ≤

4M − 2, which Balan et al. [8] proved by applying certain techniques from algebraic

geometry (some of which will be applied later in this section). In fact, their result

actually gives that 4M − 2 or more measurement vectors, if chosen generically, will
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yield injective intensity measurements; here, generic is a technical term involving

the Zariski topology, but it can be thought of as some undisclosed property which

is satisfied with probability 1 by measurement vectors drawn from continuous dis-

tributions. This leads us to think that N∗(M) generic measurement vectors might

also yield injectivity.

The lemma that follows will help to refine our intuition for N∗(M), and it will

also play a key role in the main theorems of this section (a similar result appears

in [62]). Before stating the result, define the real M2-dimensional space HM×M of

self-adjoint M × M matrices; note that this is not a vector space over the com-

plex numbers since the diagonal of a self-adjoint matrix must be real. Given an

ensemble of measurement vectors {ϕn}Nn=1 ⊆ CM , define the super analysis operator

A : HM×M → RN by (AH)(n) = 〈H,ϕnϕ∗n〉HS; here, 〈·, ·〉HS denotes the Hilbert-

Schmidt inner product, which induces the Frobenius matrix norm. Note that A is a

linear operator, and yet

(Axx∗)(n) = 〈xx∗, ϕnϕ∗n〉HS = Tr[ϕnϕ
∗
nxx

∗]

= Tr[ϕ∗nxx
∗ϕn] = ϕ∗nxx

∗ϕn = |〈x, ϕn〉|2 = (A(x))(n).

In words, the class of vectors identified with x modulo T can be “lifted” to xx∗,

thereby linearizing the intensity measurement process at the price of squaring the

dimension of the vector space of interest; this identification has been exploited by

some of the most noteworthy strides in modern phase retrieval [7,27]. As the follow-

ing lemma shows, this identification can also be used to characterize injectivity:

Lemma 2.8. A is not injective if and only if there exists a matrix of rank 1 or 2 in

the null space of A.

Proof. (⇒) If A is not injective, then there exist x, y ∈ CM/T with x 6≡ y mod T

such that A(x) = A(y). That is, Axx∗ = Ayy∗, and so xx∗−yy∗ is in the null space

of A.
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(⇐) First, suppose there is a rank-1 matrix H in the null space of A. Then

there exists x ∈ CM such that H = xx∗ and

(A(x))(n) = (Axx∗)(n) = 0 = (A(0))(n).

But x 6≡ 0 mod T, and so A is not injective. Now suppose there is a rank-2 matrix

H in the null space of A. Then by the spectral theorem, there are orthonormal

u1, u2 ∈ CM and nonzero λ1 ≥ λ2 such that H = λ1u1u
∗
1 + λ2u2u

∗
2. Since H is in the

null space of A, the following holds for every n:

0 = 〈H,ϕnϕ∗n〉HS = 〈λ1u1u
∗
1 + λ2u2u

∗
2, ϕnϕ

∗
n〉HS = λ1|〈u1, ϕn〉|2 + λ2|〈u2, ϕn〉|2. (4)

Taking x := |λ1|1/2u1 and y := |λ2|1/2u2, note that y 6≡ x mod T since they are

nonzero and orthogonal. We claim that A(x) = A(y), which would complete the

proof. If λ1 and λ2 have the same sign, then by (4), |〈x, ϕn〉|2 + |〈y, ϕn〉|2 = 0 for

every n, meaning |〈x, ϕn〉|2 = 0 = |〈y, ϕn〉|2. Otherwise, λ1 > 0 > λ2, and so

xx∗ − yy∗ = λ1u1u
∗
1 + λ2u2u

∗
2 = A

is in the null space of A, meaning A(x) = Axx∗ = Ayy∗ = A(y).

Lemma 2.8 indicates that we want the null space of A to avoid nonzero matrices

of rank ≤ 2. Intuitively, this is easier when the “dimension” of this set of matrices

is small. To get some idea of this dimension, count real degrees of freedom: By

the spectral theorem, almost every matrix in HM×M of rank ≤ 2 can be uniquely

expressed as λ1u1u
∗
1+λ2u2u

∗
2 with λ1 ≤ λ2. Here, (λ1, λ2) has two degrees of freedom.

Next, u1 can be any vector in CM , except its norm must be 1. Also, since u1 is only

unique up to global phase, we take its first entry to be nonnegative without loss of

generality. Given the norm and phase constraints, u1 has a total of 2M − 2 real

degrees of freedom. Finally, u2 has the same norm and phase constraints, but it
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must also be orthogonal to u1, that is, Re〈u2, u1〉 = Im〈u2, u1〉 = 0. As such, u2 has

2M − 4 real degrees of freedom. All together, we can expect the set of matrices in

question to have 2 + (2M − 2) + (2M − 4) = 4M − 4 real dimensions.

If the set S of matrices of rank ≤ 2 formed a subspace of HM×M (it doesn’t),

then we could expect the null space of A to intersect that subspace nontrivially

whenever dim null(A)+(4M−4) > dim(HM×M) = M2. By the rank-nullity theorem,

this would indicate that injectivity requires

N ≥ rank(A) = M2 − dim null(A) ≥ 4M − 4. (5)

Of course, this logic is not technically valid since S is not a subspace. It is, however,

a special kind of set: a real projective variety. To see this, we first show that it

is a real algebraic variety, specifically, the set of members of HM×M for which all

3×3 minors are zero. Of course, by the rank constraint, every member of S has this

minor property. Next, we show that members of S are the only matrices with this

property: If the rank of a given matrix is ≥ 3, then it has an M × 3 submatrix of

linearly independent columns, and since the rank of its transpose is also ≥ 3, this

M × 3 submatrix must have 3 linearly independent rows, thereby implicating a full-

rank 3× 3 submatrix. This variety is said to be projective because it is closed under

scalar multiplication. If S were a projective variety over an algebraically closed

field (it’s not), then the projective dimension theorem (Theorem 7.2 of [61]) says

that S intersects null(A) nontrivially whenever the dimensions are large enough:

dim null(A) + dimS > dimHM×M , thereby implying that injectivity requires (5).

Unfortunately, this theorem is not valid when the field is R; for example, the cone

defined by x2 + y2 − z2 = 0 in R3 is a projective variety of dimension 2, but its

intersection with the 2-dimensional xy-plane is trivial, despite the fact that 2+2 > 3.

In the absence of a proof, we pose the natural conjecture:
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Conjecture 2.9 (The 4M − 4 Conjecture). Consider Φ = {ϕn}Nn=1 ⊆ CM and the

mapping A : CM/T → RN defined by (A(x))(n) := |〈x, ϕn〉|2. If M ≥ 2, then the

following statements hold:

(a) If N < 4M − 4, then A is not injective.

(b) If N ≥ 4M − 4, then A is injective for generic Φ.

For the sake of clarity, we now explicitly state what is meant by the word

“generic.” As indicated above, a real algebraic variety is the set of common zeros of

a finite set of polynomials with real coefficients. Taking all such varieties in Rn to

be closed sets defines the Zariski topology on Rn. Viewing Φ as a member of R2MN ,

we then say a generic Φ is any member of some undisclosed nonempty Zariski-open

subset of R2MN . Considering Zariski-open sets are either empty or dense with full

measure, genericity is a particularly strong property. As such, another way to state

part (b) of the 4M − 4 conjecture is “If N ≥ 4M − 4, then there exists a real

algebraic variety V ⊆ R2MN such that A is injective for every Φ 6∈ V .” Note that

the work of Balan, Casazza and Edidin [8] already proves this for N ≥ 4M − 2, and

in the time since we initially posed this conjecture [10, 11], Conca, Edidin, Hering

and Vinzant [38] proved it for the case M = 2m + 1, where m is any positive integer.

Furthermore, Conca et al. successfully established part (b) by using techniques from

algebraic geometry to show that the set of non-injective ensembles is a subset of a

proper real algebraic variety and, hence, a Zariski closed set [38].

At this point, it is fitting to mention that after initially formulating this conjec-

ture, Bodmann presented a Vandermonde construction of 4M − 4 injective intensity

measurements at a phase retrieval workshop at the Erwin Schrödinger International

Institute for Mathematical Physics. The result has since been documented in [17],

and it establishes one consequence of the 4M − 4 conjecture: N∗(M) ≤ 4M − 4.

As incremental progress toward solving the 4M − 4 conjecture, we have the

following result:
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Theorem 2.10. The 4M − 4 Conjecture is true when M = 2.

Proof. (a) Since A is a linear map from 4-dimensional real space to N -dimensional

real space, the null space of A is necessarily nontrivial by the rank-nullity theorem.

Furthermore, every nonzero member of this null space has rank 1 or 2, and so

Lemma 2.8 gives that A is not injective.

(b) Consider the following matrix formed by 16 real variables:

Φ(x) =

 x1 + ix2 x5 + ix6 x9 + ix10 x13 + ix14

x3 + ix4 x7 + ix8 x11 + ix12 x15 + ix16

 . (6)

If we denote the nth column of Φ(x) by ϕn(x), then we have that A is injective

precisely when x ∈ R16 produces a basis {ϕn(x)ϕn(x)∗}4
n=1 for the space of 2 × 2

self-adjoint operators. Indeed, in this case zz∗ is uniquely determined by Azz∗ =

{〈zz∗, ϕn(x)ϕn(x)∗〉HS}4
n=1 = A(z), which in turn determines z up to a global phase

factor. Let A(x) be the 4× 4 matrix representation of the super analysis operator,

whose nth row gives the coordinates of ϕn(x)ϕn(x)∗ in terms of some basis for H2×2,

say 
 1 0

0 1

 ,
 0 0

0 1

 , 1√
2

 0 1

1 0

 , 1√
2

 0 i

−i 0

 . (7)

Then V = {x : Re det A(x) = Im det A(x) = 0} is a real algebraic variety in R16,

and we see that A is injective whenever x ∈ V c. Since V c is Zariski-open, it is either

empty or dense with full measure. In fact, V c is not empty, since we may take x

such that

Φ(x) =

 1 0 1 1

0 1 1 i

 ,
as indicated in Theorem 4.1 of [6]. Therefore, V c is dense with full measure.
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Algorithm 1 The HMW test for injectivity when M = 3

Input: Measurement vectors {ϕn}Nn=1 ⊆ C3

Output: Whether A is injective

Define A : H3×3 → RN such that AH = {〈H,ϕnϕ∗n〉HS}Nn=1

if dim null(A) = 0 then
Output: “INJECTIVE” {if A is injective, then A is injective}

else
Pick H ∈ null(A), H 6= 0
if dim null(A) = 1 and det(H) 6= 0 then

Output: “INJECTIVE” {if A only maps nonsingular matrices

to zero, then A is injective}
else

Output: “NOT INJECTIVE” {in the remaining case, A maps differences

of rank-1 matrices to zero}
end if

end if

We also have a proof for the M = 3 case, but we first introduce Algorithm 1,

namely the HMW test for injectivity; we name it after Heinosaari, Mazarella and

Wolf, who implicitly introduce this algorithm in their paper [62].

Theorem 2.11 (cf. Proposition 6 in [62]). When M = 3, the HMW test correctly

determines whether A is injective.

Proof. First, if A is injective, then A(x) = Axx∗ = Ayy∗ = A(y) if and only

if xx∗ = yy∗, i.e., y ≡ x mod T. Next, suppose A has a 1-dimensional null space.

Then Lemma 2.8 gives that A is injective if and only if the null space of A is spanned

by a matrix of full rank. Finally, if the dimension of the null space is 2 or more, then

there exist linearly independent (nonzero) matrices A and B in this null space. If

det (A) = 0, then it must have rank 1 or 2, and so Lemma 2.8 gives that A is not

injective. Otherwise, consider the map

f : t 7→ det (A cos t+B sin t) ∀t ∈ [0, π].

Since f(0) = det (A) and f(π) = det (−A) = (−1)3 det (A) = − det (A), the inter-

mediate value theorem gives that there exists t0 ∈ [0, π] such that f(t0) = 0, i.e., the
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matrix A cos t0 + B sin t0 is singular. Moreover, this matrix is nonzero since A and

B are linearly independent, and so its rank is either 1 or 2. Lemma 2.8 then gives

that A is not injective.

As an example, we may run the HMW test on the columns of the following

matrix:

Φ =


2 1 1 0 0 0 1 i

−1 0 0 1 1 −1 −2 2

0 1 −1 1 −1 2i i −1

 . (8)

In this case, the null space of A is 1-dimensional and spanned by a nonsingular

matrix. As such, A is injective. We will see that the HMW test has a few important

applications. First, we use it to prove the 4M − 4 Conjecture in the M = 3 case:

Theorem 2.12. The 4M − 4 Conjecture is true when M = 3.

Proof. (a) Suppose N < 4M − 4 = 8. Then by the rank-nullity theorem, the super

analysis operator A : H3×3 → RN has a null space of at least 2 dimensions, and so

by the HMW test, A is not injective.

(b) Consider a 3 × 8 matrix of real variables Φ(x) similar to (6). Then A is

injective whenever x ∈ R48 produces an ensemble {ϕn(x)}8
n=1 ⊆ C3 that passes the

HMW test. To pass, the rank-nullity theorem says that the null space of the super

analysis operator must be 1-dimensional and spanned by a nonsingular matrix. We

use an orthonormal basis for H3×3 similar to (7) to find an 8×9 matrix representation

of the super analysis operator A(x); it is easy to check that the entries of this matrix

(call it A(x)) are polynomial functions of x. Consider the matrix

B(x, y) =

 yT

A(x)

 ,
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and let u(x) denote the vector of (1, j)th cofactors of B(x, y). Then 〈y, u(x)〉 =

det(B(x, y)). This implies that u(x) is in the null space of A(x), since each row of

A(x) is necessarily orthogonal to u(x).

We claim that u(x) = 0 if and only if the dimension of the null space of A(x)

is 2 or more, that is, the rows of A(x) are linearly dependent. First, (⇐) is true

since the entries of u(x) are signed determinants of 8×8 submatrices of A(x), which

are necessarily zero by the linear dependence of the rows. For (⇒), we have that

0 = 〈y, 0〉 = 〈y, u(x)〉 = det(B(x, y)) for all y ∈ R9. That is, even if y is nonzero and

orthogonal to the rows of A(x), the rows of B(x, y) are linearly dependent, and so

the rows of A(x) must be linearly dependent. This proves the intermediate claim.

We now use the claim to prove the result. The entries of u(x) are coordinates

of a matrix U(x) ∈ H3×3 in the same basis as before. Note that the entries of U(x)

are polynomials of x. Furthermore, A is injective if and only if detU(x) 6= 0. To see

this, observe three cases:

Case I: U(x) = 0, i.e., u(x) = 0, or equivalently, dim null(A(x)) ≥ 2. By the

HMW test, A is not injective.

Case II: The null space is spanned by U(x) 6= 0, but detU(x) = 0. By the

HMW test, A is not injective.

Case III: The null space is spanned by U(x) 6= 0, and detU(x) 6= 0. By the

HMW test, A is injective.

Defining the real algebraic variety V = {x : detU(x) = 0} ⊆ R48, we then

have that A is injective precisely when x ∈ V c. Since V c is Zariski-open, it is either

empty or dense with full measure, but it is nonempty since (8) passes the HMW test.

Therefore, V c is dense with full measure.

To be clear, this result has since been proven as part of a larger class of ensem-

bles for which the conjecture holds, namely, the case M = 2m + 1 for any positive

integer m [38]. In fact, Conca, Edidin, Hering and Vinzant prove much more:
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Theorem 2.13 (Theorem 1.1 and Proposition 5.4 in [38]).

(a) If m is any positive integer, then part (a) of the 4M − 4 Conjecture is true for

M = 2m + 1.

(b) Part (b) of the 4M − 4 Conjecture is true.

As a consequence of Theorems 2.10 and 2.13, the first remaining open case of

the 4M − 4 Conjecture is M = 4.

Now recall Wright’s conjecture: there exist unitary matrices U1, U2 and U3

such that Φ = [U1 U2 U3] yields injective intensity measurements. Also recall that

Wright’s conjecture implies N∗(M) ≤ 3M − 2. Again, both of these were disproved

by Heinosaari et al. [62] using deep results in differential geometry. Alternatively,

Theorem 2.12 also disproves these in the case where M = 3, since N∗(3) = 4(3)−3 =

8 > 7 = 3(3)− 2.

Note that the HMW test can be used to test for injectivity in three dimensions

regardless of the number of measurement vectors. As such, it can be used to evaluate

ensembles of 3× 3 unitary matrices for quantum mechanics. For example, consider

the 3×3 fractional discrete Fourier transform, defined in [22] using discrete Hermite-

Gaussian functions:

Fα =
1

6


3 +
√

3
√

3
√

3
√

3 3−
√

3
2

3−
√

3
2√

3 3−
√

3
2

3−
√

3
2



+
eαiπ

6


3−
√

3 −
√

3 −
√

3

−
√

3 3+
√

3
2

3+
√

3
2

−
√

3 3+
√

3
2

3+
√

3
2

+
eαiπ/2

2


0 0 0

0 1 −1

0 −1 1

 .

It can be shown by the HMW test that Φ = [I F 1/2 F F 3/2] yields injective intensity

measurements. This leads to the following refinement of Wright’s conjecture:
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Conjecture 2.14. Let F denote the M ×M discrete fractional Fourier transform

defined in [22]. Then for every M ≥ 3, Φ = [I F 1/2 F F 3/2] yields injective intensity

measurements.

This conjecture can be viewed as the discrete analog to the work of Jaming [67],

in which ensembles of continuous fractional Fourier transforms are evaluated for

injectivity.

2.3 Achieving injectivity with 4M − 4 intensity measurements

In this section, we provide an ensemble of 4M − 4 measurement vectors which

yield injective intensity measurements for CM . The vectors in this ensemble are

modulated discrete cosine functions, and they are explicitly constructed at the end of

this section. We start here by motivating the construction, specifically by identifying

the significance of circular autocorrelation, which we define in (9) below.

Consider the P -dimensional complex vector space

`(ZP ) := {u : Z→ C : u(p+ P ) = u(p), ∀p ∈ Z}.

The discrete Fourier basis in `(ZP ) is the sequence of P vectors {fq}q∈ZP defined

by fq(p) := e2πipq/P (the notation “q ∈ ZP” is taken to mean a set of coset repre-

sentatives of Z with respect to the subgroup PZ). The discrete Fourier transform

(DFT) on ZP is F ∗ : `(ZP )→ `(ZP ), with corresponding inverse DFT (F ∗)−1 = 1
P
F ,

defined by

(F ∗u)(q) = 〈u, fq〉 =
∑
p∈ZP

u(p)e−2πipq/P ,

(Fv)(p) =
∑
q∈ZP

v(q)fq(p) =
∑
q∈ZP

v(q)e2πipq/P .
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Now let T p : `(ZP )→ `(ZP ) be the translation operator (T pu)(p′) := u(p′ − p). The

circular autocorrelation of u is then CirAut(u) ∈ `(ZP ), defined entrywise by

(CirAut(u))(p) := 〈u, T pu〉 =
∑
p′∈ZP

u(p′)u(p′ − p). (9)

Consider the DFT of a circular autocorrelation:

(F ∗CirAut(u))(q) =
∑
p∈ZP

∑
p′∈ZP

u(p′)u(p′ − p)e−2πipq/P

=
∑
p′∈ZP

u(p′)e−2πip′q/P

( ∑
p∈ZP

u(p′ − p)e−2πi(p′−p)q/P
)

=
∑
p′∈ZP

u(p′)e−2πip′q/P

( ∑
p′′∈ZP

u(p′′)e−2πip′′q/P

)
= |〈u, fq〉|2. (10)

As such, if one has the intensity measurements {|〈u, fq〉|2}q∈ZP , then one may com-

pute the circular autocorrelation CirAut(u) by applying the inverse DFT. In order

to perform phase retrieval from {|〈u, fq〉|2}q∈ZP , it therefore suffices to determine u

from CirAut(u). This is the motivation for the approach in this section.

To see how to “invert” CirAut, let’s consider an example. Take x = (a, b, c) ∈

C3 and consider the circular autocorrelation of x as a signal in `(Z3):

CirAut(x) = (|a|2 + |b|2 + |c|2, ac+ ba+ cb, ab+ bc+ ca).

Notice that every entry of CirAut(x) is a nonlinear combination of the entries of x,

from which it is unclear how to compute the entries of x. To simplify the structure,

we pad x with zeros and enforce even symmetry; then the circular autocorrelation

of u := (2a, b, c, 0, 0, 0, 0, c, b) ∈ `(Z9) is

CirAut(u) = (4|a|2 + |b|2 + |c|2, 2 Re(2ab+ bc), |b|2 + 4 Re(ac), 2 Re(bc), |c|2,

|c|2, 2 Re(bc), |b|2 + 4 Re(ac), 2 Re(2ab+ bc)). (11)
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Although it still appears rather complicated, this circular autocorrelation actually

lends itself well to recovering the entries of x.

Before explaining this further, first note that 9 = 4(3)−3, and we can generalize

our mapping x 7→ u by sending vectors in CM to members of `(Z4M−3). To make this

clear, consider the reversal operator R : `(ZP )→ `(ZP ) defined by (Ru)(p) = u(−p).

Then given a vector x ∈ CM , padding with zeros and enforcing even symmetry is

equivalent to embedding x in `(Z4M−3) by appending 3M − 3 zeros to x and then

taking u = x + Rx ∈ `(Z4M−3). (From this point forward, “x” is used to represent

both the original signal in CM and the version of x embedded in `(Z4M−3) via zero-

padding; the distinction will be clear from context.) Computing x ∈ CM then

reduces to determining the first M entries of x ∈ `(Z4M−3) from CirAut(x+Rx). If

x is completely real-valued, then this is indeed possible. For instance, consider the

circular autocorrelation (11). If the entries of x are all real, then this becomes

CirAut(x+Rx) =
(
4a2 + b2 + c2, 4ab+ 2bc, b2 + 4ac, 2bc, c2,

c2, 2bc, b2 + 4ac, 4ab+ 2bc
)
.

Since (CirAut(x + Rx))(4) = c2, we simply take a square root to obtain c up to a

sign. Assuming c is nonzero, we then divide (CirAut(x+Rx))(3) by 2c to determine

b up to the same sign. Then subtracting b2 from (CirAut(x + Rx))(2) and dividing

by 4c gives a up to the same sign.

From this example, we see that the process of recovering the entries of x from

CirAut(x+Rx) is iterative, working backward through its first 2M − 2 entries. But

what happens if c is zero? Fortunately, this process doesn’t break: In this case, we

have

CirAut(x+Rx) = (4a2 + b2, 4ab, b2, 0, 0, 0, 0, b2, 4ab).
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Thus, we need only start with (CirAut(x + Rx))(2) to determine the remaining

entries of x up to a sign. This observation brings to light the important role of the

last nonzero entry of x in the iteration. The relationship between this coordinate

and the entries of CirAut(x+Rx) will become more rigorous later.

The above example illustrated how a real signal x is determined by CirAut(x+

Rx). A complex-valued signal, on the other hand, is not completely determined from

CirAut(x+Rx). Luckily, this can be fixed by introducing a second vector in `(Z4M−3)

obtained from x, and we will demonstrate this later, but for now we focus on x+Rx.

To this end, we first take a closer look at the entries of CirAut(x + Rx). Since this

circular autocorrelation has even symmetry by construction, we need only consider

all entries of CirAut(x+Rx) up to index 2M−2. This leads to the following lemma:

Lemma 2.15. Let x denote an M-dimensional complex signal embedded in `(Z4M−3)

such that x(p) = 0 for all p = M, . . . , 4M − 4. Then

(CirAut(x+Rx))(p) = 2 Re〈x, T px〉+ 〈x,RT−px〉

for all p = 1, . . . , 2M − 2.

Proof. First note that by the definition of the circular autocorrelation in (9) we have

(CirAut(x+Rx))(p) = 〈x+Rx, T p(x+Rx)〉

= 2 Re〈x, T px〉+ 〈x,RT−px〉+ 〈x,RT px〉.

Thus, to complete the proof it suffices to show that 〈x,RT px〉 = 0 for all p =

1, . . . , 2M − 2. Since x is only nonzero in its first M entries, we have

〈x,RT px〉 =
M−1∑
p′=0

x(p′)(RT px)(p′) =
M−1∑
p′=0

x(p′)(T px)(−p′) =
M−1∑
p′=0

x(p′)x(−p′ − p),
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where the summand is zero whenever −p′ − p /∈ [0,M − 1] modulo 4M − 3. This

is equivalent to having −p not lie in the Minkowski sum p′ + [0,M − 1], and since

p′ ∈ [0,M − 1] we see that 〈x,RT px〉 = 0 for all p = 1, . . . , 2M − 2.

As a consequence of Lemma 2.15, the following theorem expresses the entries

of CirAut(x+Rx) in terms of the entries of x:

Theorem 2.16. Let x denote an M-dimensional complex signal embedded in `(Z4M−3)

such that x(p) = 0 for all p = M, . . . , 4M − 4. Then we have

(CirAut(x+Rx))(p)

=


2 Re

( M−1∑
p′= p+1

2

x(p′)(x(p′ − p) + x(p− p′))
)

if p is odd

2 Re

( M−1∑
p′= p

2
+1

x(p′)(x(p′ − p) + x(p− p′))
)

+
∣∣x(p

2
)
∣∣2 if p is even

(12)

for all p = 1, . . . , 2M − 2.

Proof. We first use Lemma 2.15 to get

(CirAut(x+Rx))(p) = 2 Re〈x, T px〉+ 〈x,RT−px〉

= 2 Re

(M−1∑
p′=0

x(p′)x(p′ − p)
)

+
M−1∑
p′=0

x(p′)x(p− p′)

= 2 Re

(M−1∑
p′=p

x(p′)x(p′ − p)
)

+

min{p,M−1}∑
p′=max{p−(M−1),0}

x(p′)x(p− p′), (13)

where the last equality takes into account that the first summand is nonzero only

when p′ − p ∈ [0,M − 1] and the second summand is nonzero only when p − p′ ∈

[0,M − 1], i.e., when p′ ∈ [p, p+ (M − 1)] and p′ ∈ [p− (M − 1), p], respectively. To

continue, we divide our analysis into cases.
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For p = 1, . . . ,M − 1, (13) gives

(CirAut(x+Rx))(p) = 2 Re

(M−1∑
p′=p

x(p′)x(p′ − p)
)

+

p∑
p′=0

x(p′)x(p− p′). (14)

If p is odd we can then write

p∑
p′=0

x(p′)x(p− p′) =

p−1
2∑

p′=0

x(p′)x(p− p′) +

p∑
p′= p+1

2

x(p′)x(p− p′)

=

p∑
p′′= p+1

2

x(p− p′′)x(p′′) +

p∑
p′= p+1

2

x(p′)x(p− p′)

= 2 Re

( p∑
p′= p+1

2

x(p′)x(p− p′)
)
, (15)

while if p is even we similarly write

p∑
p′=0

x(p′)x(p− p′) = 2 Re

( p∑
p′= p

2
+1

x(p′)x(p− p′)
)

+
∣∣x(p

2

)∣∣2 . (16)

Substituting (15) and (16) into (14) then gives (12).

For the remaining case, p = M, . . . , 2M − 2 and (13) gives

(CirAut(x+Rx))(p) =
M−1∑

p′=p−(M−1)

x(p′)x(p− p′). (17)

Similar to the previous case, taking p to be odd yields

M−1∑
p′=p−(M−1)

x(p′)x(p− p′) = 2 Re

( M−1∑
p′= p+1

2

x(p′)x(p− p′)
)
, (18)
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while taking p to be even yields

M−1∑
p′=p−(M−1)

x(p′)x(p− p′) = 2 Re

( M−1∑
p′= p

2
+1

x(p′)x(p− p′)
)

+
∣∣x(p

2

)∣∣2 , (19)

and substituting (18) and (19) into (17) also gives (12).

Notice (12) shows that each member of {(CirAut(x + Rx))(p)}2M−2
p=1 can be

written as a combination of the first M entries of x, but only those at or beyond the

dp
2
eth index. As such, the index of the last nonzero entry of x is closely related to

that of the last nonzero entry of {(CirAut(x+Rx))(p)}2M−2
p=1 . This corresponds to the

observation earlier in the case of x ∈ R3 where the third coordinate was assumed to

be zero. We identify the relationship between the locations of these nonzero entries

in the following lemma:

Lemma 2.17. Let x denote an M-dimensional complex signal embedded in `(Z4M−3)

such that x(p) = 0 for all p = M, . . . , 4M − 4. Then the last nonzero entry of

{(CirAut(x+Rx))(p)}2M−2
p=0 has index p = 2q, where q is the index of the last nonzero

entry of x.

Proof. If q ≥ 1, then (12) gives that (CirAut(x + Rx))(2q) = |x(q)|2 6= 0. Note

that since x(p′) = 0 for every p′ > q, (12) also gives that (CirAut(x + Rx))(p) = 0

for every p > 2q. For the remaining case where q = 0, (12) immediately gives that

(CirAut(x+Rx))(p) = 0 for every p ≥ 1. To show that (CirAut(x+Rx))(0) 6= 0 in

this case, we apply the definition of circular autocorrelation in (9):

(CirAut(x+Rx))(0) = 〈x+Rx, x+Rx〉 = ‖x+Rx‖2 = |2x(0)|2 6= 0,

where the last equality uses the fact that x is only supported at 0 (since q = 0).

As previously mentioned, we are unable to recover the entries of a complex

signal x solely from CirAut(x+Rx). One way to address this is to rotate the entries

38



of x in the complex plane and also take the circular autocorrelation of this modified

signal. If we rotate by an angle which is not an integer multiple of π, this will

produce new entries which are linearly independent from the corresponding entries

of x when viewed as vectors in the complex plane. As we will see, the problem of

recovering the entries of x then reduces to solving a linear system.

Take any (4M−3)×(4M−3) diagonal modulation operator E whose diagonal

entries {ωk}4M−4
k=0 are of unit-modulus satisfying ωjωk /∈ R for all j 6= k and consider

the new vector Ex ∈ `(Z4M−3). Then Theorem 2.16 gives

(CirAut(Ex+REx))(p)

=


2 Re

( M−1∑
p′= p+1

2

ωp′x(p′)(ωp′−px(p′ − p) + ωp−p′x(p− p′))
)

if p is odd

2 Re

( M−1∑
p′= p

2
+1

ωp′x(p′)(ωp′−px(p′ − p) + ωp−p′x(p− p′))
)

+
∣∣x(p

2
)
∣∣2 if p is even

(20)

for all p = 1, . . . , 2M−2. We will see that (12) and (20) together allow us to solve for

the entries of x (up to a global phase factor) by working iteratively backward through

the entries of CirAut(x + Rx) and CirAut(Ex + REx). As alluded to earlier, each

entry index forms a linear system which can be solved using the following lemma:

Lemma 2.18. Let a, b ∈ C \ {0} and ω ∈ C \ R with |ω| = 1. Then

b =
i

a Im(ω)

(
Re(ωab)− ωRe(ab)

)
. (21)
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Proof. By direct manipulation, we have

Re(ωab)− ωRe(ab) = Re(ω) Re(ab)− Im(ω) Im(ab)− ωRe(ab)

= −i Im(ω)
(

Re(ab)− i Im(ab)
)

= −i Im(ω)
(

Re(ab) + i Im(ab)
)

= −iab Im(ω).

Rearranging then yields the desired result.

We now use this lemma to describe how to recover x up to global phase. By

Lemma 2.17, the last nonzero entry of {(CirAut(x+Rx))(p)}2M−2
p=0 has index p = 2q,

where q indexes the last nonzero entry of x. As such, we know that x(k) = 0 for every

k > q, and x(q) can be estimated up to a phase factor (x̂(q) = eiψx(q)) by taking

the square root of (CirAut(x+Rx))(2q) = |x(q)|2 (we will verify this soon, but this

corresponds to the examples we have seen so far). Next, if we know Re(x(q)x(k))

and Re(ωqωkx(q)x(k)) for some k < q, then we can use these to estimate x(k):

x̂(k) :=
i

x̂(q) Im(ωqωk)

(
Re(ωqωkx(q)x(k))− ωqωk Re(x(q)x(k))

)
= eiψx(k), (22)

where the last equality follows from substituting a = x(q), b = x(k) and ω = ωqωk

into (21). Overall, once we know x(q) up to phase, we can then find x(k) relative

to this same phase for each k = 0, . . . , q − 1, provided we know Re(x(q)x(k)) and

Re(ωqωkx(q)x(k)) for these k’s. Thankfully, these values can be determined from

the entries of CirAut(x+Rx) and CirAut(Ex+REx):

Theorem 2.19. Let x denote an M-dimensional complex signal embedded in `(Z4M−3)

such that x(p) = 0 for all p = M, . . . , 4M − 4 and E be a (4M − 3) × (4M − 3)

diagonal modulation operator with diagonal entries {ωk}4M−4
k=0 satisfying |ωk| = 1 for

all k = 0, . . . , 4M − 4 and ωjωk /∈ R for all j 6= k. Then x can be recovered up to a

global phase factor from CirAut(x+Rx) and CirAut(Ex+REx).
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Proof. Letting q denote the index of the last nonzero entry of x, it suffices to estimate

{x(k)}qk=0 up to a global phase factor. To this end, recall from Lemma 2.17 that

the last nonzero entry of {(CirAut(x + Rx))(p)}2M−2
p=0 has index p = 2q. If q = 0,

then we have already seen that (CirAut(x + Rx))(0) = 4|x(0)|2. Since there exists

ψ ∈ [0, 2π) such that x(0) = e−iψ|x(0)|, we may take

x̂(0) := 1
2

√
(CirAut(x+Rx))(0) = |x(0)| = eiψx(0).

Otherwise q ∈ [1,M − 1], and (12) gives

(CirAut(x+Rx))(2q)

= |x(q)|2 + 2 Re

( M−1∑
p′=q+1

x(p′)(x(p′ − 2q) + x(2q − p′))
)

= |x(q)|2 .

Thus, taking x̂(q) :=
√

(CirAut(x+Rx))(2q) = |x(q)| gives us x̂(q) = eiψx(q) for

some ψ ∈ [0, 2π).

In the case where q = 1, all that remains to determine is x̂(0), a calculation

which we save for the end of the proof. For now, suppose q ≥ 2. Since we already

know x̂(q) = eiψx(q), we would like to determine x̂(k) for k = 1, . . . , q − 1. To this

end, take r ∈ [0, q − 2] and suppose we have x̂(k) = eiψx(k) for all k = q − r, . . . , q.

If we can obtain x̂(q − (r + 1)) up to the same phase from this information, then

working iteratively from r = 0 to r = q − 2 will give us x̂(k) up to global phase for

all but the zeroth entry (which we address later). Note when r is even, (12) gives

(CirAut(x+Rx))(2q − (r + 1))

= 2 Re

( q∑
p′=q− r

2

x(p′)(x(p′ − (2q − (r + 1))) + x((2q − (r + 1))− p′))
)

= 2 Re
(
x(q)x(q − (r + 1))

)
+ 2

q−1∑
p′=q− r

2

Re
(
x(p′)x((2q − (r + 1))− p′)

)
,
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where the last equality follows from the observation that

p′ − (2q − (r + 1)) ≤ −q + (r + 1) ≤ −1

over the range of the sum, meaning x(p′ − (2q − (r + 1))) = 0 throughout the sum.

Similarly when r is odd, (12) gives

(CirAut(x+Rx))(2q − (r + 1)) = 2 Re
(
x(q)x(q − (r + 1))

)
+
∣∣x(q − r+1

2

)∣∣2
+ 2

q−1∑
p′=q− r−1

2

Re
(
x(p′)x((2q − (r + 1))− p′)

)
.

In either case, we can isolate Re(x(q)x(q − (r + 1))) to get an expression in terms of

(CirAut(x+Rx))(2q− (r+ 1)) and other terms of the form Re(x(k)x(k′)) or |x(k)|2

for k, k′ ∈ [q − r, q − 1]. By the induction hypothesis, we have x̂(k) = eiψx(k) for

k = q − r, . . . , q − 1, and so we can use these estimates to determine these other

terms:

Re(x̂(k)x̂(k′)) = Re(eiψx(k)eiψx(k′)) = Re(x(k)x(k′)),

|x̂(k)|2 = |eiψx(k)|2 = |x(k)|2.

As such, we can use (CirAut(x + Rx))(2q − (r + 1)) along with the higher-indexed

estimates x̂(k) to determine the term Re(x(q)x(q − (r + 1))). Similarly, we can use

(CirAut(Ex+REx))(2q − (r + 1)) along with the higher-indexed estimates x̂(k) to

determine Re(ωqω(q−(r+1))x(q)x(q − (r + 1))). We then plug these into (22), along

with the estimate x̂(q) = eiψx(q) (which is also available by the induction hypothesis),

to get x̂(2q − (r + 1)) = eiψx(2q − (r + 1)).

At this point, we have determined {x(k)}qk=1 up to a global phase factor when-

ever q ≥ 1, and so it remains to find x̂(0). For this, note that when q is odd, (12)
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gives

(CirAut(x+Rx))(q) = 4 Re(x(q)x(0)) + 2

q−1∑
p′= q+1

2

Re
(
x(p′)x(q − p′)

)
,

while for even q, we have

(CirAut(x+Rx))(q) = 4 Re(x(q)x(0)) + 2

q−1∑
p′= q

2
+1

Re
(
x(p′)x(q − p′)

)
+
∣∣x( q

2

)∣∣2 .
As before, isolating Re(x(q)x(0)) in either case produces an expression in terms

of (CirAut(x + Rx))(q) and other terms of the form Re(x(k)x(k′)) or |x(k)|2 for

k, k′ ∈ [1, q− 1]. These other terms can be calculated using the estimates {x̂(k)}q−1
k=1,

and so we can also calculate Re(x(q)x(0)) from (CirAut(x + Rx))(q). Similarly, we

can calculate Re(ωqω0x(q)x(0)) from {x̂(k)}q−1
k=1 and (CirAut(Ex + REx))(q), and

plugging these into (22) along with x̂(q) produces the estimate x̂(0) = eiψx(0).

Theorem 2.19 establishes that it is possible to recover a signal x ∈ CM up to a

global phase from {(CirAut(x+Rx))(q)}2M−2
q=0 and {(CirAut(Ex+REx))(q)}2M−2

q=0 .

We now return to how these circular autocorrelations relate to intensity measure-

ments. Recall from (10) that the DFT of the circular autocorrelation is the modulus

squared of the DFT of the original signal: (F ∗CirAut(u))(q) = |(F ∗u)(q)|2. Also

note that the DFT commutes with the reversal operator:

(F ∗Ru)(q) =
∑
p∈ZP

u(−p)e−2πipq/P =
∑
p′∈ZP

u(p′)e−2πip′(−q)/P

= (F ∗u)(−q) = (RF ∗u)(q).
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With this, we can express CirAut(x+Rx) in terms of intensity measurements with

a particular ensemble:

(F ∗CirAut(x+Rx))(q) = |(F ∗(x+Rx))(q)|2 = |(F ∗x)(q) + (F ∗Rx)(q)|2

= |(F ∗x)(q) + (F ∗x)(−q)|2 = |〈x, fq + f−q〉|2.

Defining the qth discrete cosine function cq ∈ `(Z4M−3) by

cq(p) := 2 cos
(

2πpq
4M−3

)
= e2πipq/(4M−3) + e−2πipq/(4M−3) = (fq + f−q)(p),

this means that (F ∗CirAut(x + Rx))(q) = |〈x, cq〉|2 for all q ∈ Z4M−3. Similarly, if

we take the modulation matrix E to have diagonal entries ωk = e2πik/(2M−1) for all

k = 0, . . . , 4M − 4, we find

(F ∗CirAut(Ex+REx))(q) = |〈Ex, cq〉|2 = |〈x,E∗cq〉|2.

Thus, coupling the DFT with Theorem 2.19 allows us to recover the signal x from

4M − 2 intensity measurements, namely with the ensemble {cq}2M−2
q=0 ∪ {E∗cq}2M−2

q=0 .

Note that since x ∈ `(Z4M−3) is actually a zero-padded version of x ∈ CM , we

may view cq and E∗cq as members of CM by discarding the entries indexed by

p = M, . . . , 4M − 4.

Considering this section promised phase retrieval from only 4M − 4 intensity

measurements, we must somehow find a way to discard two of these 4M − 2 mea-
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surement vectors. To do this, first note that

(CirAut(Ex+REx))(0) = ‖Ex+REx‖2

=
∑

k∈Z4M−3

∣∣e2πik/(2M−1)x(k) + e2πi(−k)/(2M−1)x(−k)
∣∣2

=
−1∑

k=−(2M−2)

∣∣e2πi(−k)/(2M−1)x(−k)
∣∣2 + |2x(0)|2

+
2M−2∑
k=1

∣∣e2πik/(2M−1)x(k)
∣∣2

= ‖x+Rx‖2 = CirAut(x+Rx)(0).

Moreover, we have

(CirAut(Ex+REx))(2M − 2)

=
∑

k∈Z4M−3

(Ex+REx)(k)(Ex+REx)(k − (2M − 2))

= (Ex+REx)(M − 1)(Ex+REx)(−(M − 1))

= (Ex+REx)(M − 1)(Ex+REx)(M − 1),

where the last equality is by even symmetry. Since x is only supported on k =

0, . . . ,M − 1, we then have

(CirAut(Ex+REx))(2M − 2) = |(Ex+REx)(M − 1)|2

=
∣∣e2πi(M−1)/(2M−1)x(M − 1) + e−2πi(M−1)/(2M−1)x(−(M − 1))

∣∣2
=
∣∣e2πi(M−1)/(2M−1)x(M − 1)

∣∣2
= |x(M − 1)|2 = (CirAut(x+Rx))(2M − 2).
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Furthermore, the even symmetry of the circular autocorrelation also gives

(CirAut(Ex+REx))(−(2M − 2)) = (CirAut(Ex+REx))(2M − 2)

= (CirAut(x+Rx))(2M − 2) = (CirAut(x+Rx))(−(2M − 2)).

These redundancies between CirAut(x+Rx) and CirAut(Ex+REx) indicate that we

might be able to remove measurement vectors from our ensemble while maintaining

our ability to perform phase retrieval. The following theorem confirms this suspicion:

Theorem 2.20. Let cq ∈ CM be the truncated discrete cosine function defined by

cq(p) := 2 cos( 2πpq
4M−3

) for all p = 0, . . . ,M − 1, and let E be the M ×M diagonal

modulation operator with diagonal entries ωk = e2πik/(2M−1) for all k = 0, . . . ,M −1.

Then the intensity measurement mapping A : CM/T → R4M−4 defined by A(x) :=

{|〈x, cq〉|2}2M−2
q=0 ∪ {|〈x,E∗cq〉|2}2M−3

q=1 is injective.

Proof. Since Theorem 2.19 allows us to reconstruct any x ∈ CM up to a global phase

factor from the entries of CirAut(x+Rx) and CirAut(Ex+REx), it suffices to show

that the intensity measurements {|〈x, cq〉|2}2M−2
q=0 ∪ {|〈x,E∗cq〉|2}2M−3

q=1 allow us to

recover the entries of these circular autocorrelations. To this end, recall from (10)

that these quantities are related through the inverse DFT:

CirAut(x+Rx) = (F ∗)−1{|〈x, cq〉|2}q∈Z4M−3
,

CirAut(Ex+REx) = (F ∗)−1{|〈x,E∗cq〉|2}q∈Z4M−3
.

Since we have {|〈x, cq〉|2}2M−2
q=0 , we can exploit even symmetry to determine the rest of

{|〈x, cq〉|2}q∈Z4M−3
, and then apply the inverse DFT to get CirAut(x+Rx). Moreover,

by the previous discussion, we also obtain the 0, 2M − 2, and −(2M − 2) entries of

CirAut(Ex+REx) from the corresponding entries of CirAut(x+Rx). Organize this

information about CirAut(Ex+REx) into a vector w ∈ `(Z4M−3) whose 0, 2M − 2,

and −(2M − 2) entries come from CirAut(Ex+REx) and whose remaining entries

46



are populated by even symmetry from {|〈x,E∗cq〉|2}2M−3
q=1 . We can express w as a

matrix-vector product w = A{|〈x,E∗cq〉|2}q∈Z4M−3
, where A is the identity matrix

with the 0, 2M − 2, and −(2M − 2) rows replaced by the corresponding rows of the

inverse DFT matrix. To complete the proof, it suffices to show that the matrix A is

invertible, since this would imply CirAut(Ex+REx) = (F ∗)−1A−1w.

Using the cofactor expansion, note that det(A) reduces to a determinant of a

3×3 submatrix of (F ∗)−1. Specifically, letting θ := 2π(2M − 2)2/(4M − 3) we have

det(A) = det




1 1 1

1 eiθ e−iθ

1 e−iθ eiθ


 = (e2iθ − e−2iθ)− (eiθ − e−iθ) + (e−iθ − eiθ)

= (eiθ + e−iθ − 2)(eiθ − e−iθ) = 4i(cos(θ)− 1) sin(θ),

and so A is invertible if and only if cos(θ)− 1 6= 0 and sin(θ) 6= 0. This is equivalent

to having π not divide θ, and indeed, the ratio

θ

π
=

2(2M − 2)2

4M − 3
= 2M − 5

2
+

1

2(4M − 3)

is not an integer because M ≥ 2. As such, A is invertible.

The following summarizes the measurement design and phase retrieval proce-

dure described in this section:

Measurement design

• Define the qth truncated discrete cosine function cq := {2 cos( 2πpq
4M−3

)}M−1
p=0

• Define the M ×M diagonal matrix E with entries ωk := e2πik/(2M−1) for all

k = 0, . . . ,M − 1

• Take Φ := {cq}2M−2
q=0 ∪ {E∗cq}2M−3

q=1

Phase retrieval procedure
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• Calculate {|〈x, cq〉|2}q∈Z4M−3
from {|〈x, cq〉|2}2M−2

q=0 by even extension

• Calculate CirAut(x+Rx) = (F ∗)−1{|〈x, cq〉|2}q∈Z4M−3

• Define w ∈ `(Z4M−3) so that its 0, 2M − 2, and −(2M − 2) entries are the

corresponding entries in CirAut(x+Rx) and its remaining entries are populated

by even symmetry from {|〈x,E∗cq〉|2}2M−3
q=1

• Define A to be the identity matrix with the 0, 2M − 2, and −(2M − 2) rows

replaced by the corresponding rows of the inverse DFT matrix (F ∗)−1

• Calculate CirAut(Ex+REx) = (F ∗)−1A−1w

• Recover x up to global phase from CirAut(x + Rx) and CirAut(Ex + REx)

using the process described in the proof of Theorem 2.19
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III. Almost injective intensity measurements and

the computational limits of phase retrieval

Now that we have a better understanding of injectivity in phase retrieval, it is natu-

ral to ask how much we might lose if we reduce the size of the measurement ensemble

Φ = {ϕn}Nn=1 ⊆ V , where V = RM or CM , below the known and conjectured lower

bounds (2M − 1 for the real case and 4M − 4 for the complex case, respectively).

Indeed, reducing the number of measurements is often desirable in practice as each

measurement typically incurs some sort of cost. For instance, in the case of syn-

thetic aperture radar, the number of measurements is proportional to the number

of aircraft employed in the multistatic system, each of which contributes costs in

energy and maintenance. Perhaps surprisingly, we can often decrease the number

of measurements without losing much: As we will see, almost every signal can be

completely determined from half the measurements required for injectivity. In this

chapter, we address this issue by formally introducing a theory of almost injective

intensity measurements, in which we relax the injectivity requirement to a set of

signals that is dense in RM (CM). For simplicity, we dedicate the analysis of almost

injectivity to the real case, and we conclude by examining algorithmic efficiency in

this setting.

3.1 Almost injectivity

While 4M + o(M) measurements are necessary and generically sufficient for

injectivity in the complex case, one can save a factor of 2 in the number of measure-

ments by slightly weakening the desired notion of injectivity [8, 57]. To be explicit,

we start with the following definition:

Definition 3.1. Consider Φ = {ϕn}Nn=1 ⊆ V , where V = RM or CM . The inten-

sity measurement mapping A : V/S → RN , where S = {±1} (resp. T), defined by

(A(x))(n) := |〈x, ϕn〉|2 is said to be almost injective if A−1(A(x)) = {ωx : |ω| = 1}

for almost every x ∈ V/S.
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For the complex case, it is known that 2M measurements are necessary for

almost injectivity [57], and that 2M generic measurements suffice [8] (cf. [56]); this

is the factor-of-2 savings mentioned above. For the real case, it is also known how

many measurements are necessary and generically sufficient for almost injectivity:

M+1 [8]. Like the complex case, this is also a factor-of-2 savings from the injectivity

requirement: 2M − 1. This requirement for injectivity in the real case follows from

the complement property characterization of injectivity from [8] (Theorem 2.2 of

this paper). Similar to this result, we will characterize ensembles of measurement

vectors which yield almost injective intensity measurements and, similar to its proof,

the basic idea behind the analysis is to consider sums and differences of signals

with identical intensity measurements. However, the characterization we develop is

limited to the real case; a similar analysis for the complex case remains an open

problem.

Lemma 3.2. Consider Φ = {ϕn}Nn=1 ⊆ RM and the intensity measurement mapping

A : RM/{±1} → RN defined by (A(x))(n) := |〈x, ϕn〉|2. Then A is almost injective

if and only if almost every x ∈ RM is not in the Minkowski sum span(ΦS)⊥ \ {0}+

span(ΦSc)⊥ \ {0} for all S ⊆ {1, . . . , N}. More precisely, A−1(A(x)) = {±x} if and

only if x /∈ span(ΦS)⊥ \ {0}+ span(ΦSc)⊥ \ {0} for any S ⊆ {1, . . . , N}.

Proof. By the definition of the mapping A, for x, y ∈ RM we have A(x) = A(y) if

and only if |〈x, ϕn〉| = |〈y, ϕn〉| for all n ∈ {1, . . . , N}. This occurs precisely when

there is a subset S ⊆ {1, . . . , N} such that 〈x, ϕn〉 = −〈y, ϕn〉 for every n ∈ S and

〈x, ϕn〉 = 〈y, ϕn〉 for every n ∈ Sc. Thus, A−1(A(x)) = {±x} if and only if for

every y 6= ±x and for every S ⊆ {1, . . . , N}, either there exists an n ∈ S such that

〈x+ y, ϕn〉 6= 0 or an n ∈ Sc such that 〈x− y, ϕn〉 6= 0. We claim that this occurs if

and only if x is not in the Minkowski sum span(ΦS)⊥ \ {0} + span(ΦSc)⊥ \ {0} for

all S ⊆ {1, . . . , N}, which would complete the proof. We verify the claim by seeking

the contrapositive in each direction.
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(⇒) Suppose x ∈ span(ΦS)⊥ \ {0} + span(ΦSc)⊥ \ {0}. Then there exists

u ∈ span(ΦS)⊥\{0} and v ∈ span(ΦSc)⊥\{0} such that x = u+v. Taking y := u−v,

we see that x+ y = 2u ∈ span(ΦS)⊥ \ {0} and x− y = 2v ∈ span(ΦSc)⊥ \ {0}, which

means that there is no n ∈ S such that 〈x + y, ϕn〉 6= 0 nor n ∈ Sc such that

〈x− y, ϕn〉 6= 0. Furthermore, u and v are nonzero, and so y 6= ±x.

(⇐) Suppose y 6= ±x and for every S ⊆ {1, . . . , N} there is no n ∈ S such that

〈x+ y, ϕn〉 6= 0 nor n ∈ Sc such that 〈x− y, ϕn〉 6= 0. Then x+ y ∈ span(ΦS)⊥ \ {0}

and x − y ∈ span(ΦSc)⊥ \ {0}. Since x = 1
2
(x + y) + 1

2
(x − y), we have that

x ∈ span(ΦS)⊥ \ {0}+ span(ΦSc)⊥ \ {0}.

If the mapping A is injective, then the ensemble Φ in Lemma 3.2 must satisfy

the complement property, and so the set span(ΦS)⊥ \ {0} + span(ΦSc)⊥ \ {0} is of

the form V \{0}+∅ = ∅ regardless of the choice of S ⊆ {1, . . . , N} (here, V ⊆ RM is

a proper subspace). Hence, this Minkowski sum requirement slightly weakens what

it means to be injective. We will continue to investigate this set with the aid of the

following lemma:

Lemma 3.3. Let U and V be subspaces of a common vector space. If U ∩ V = {0},

then U \ {0}+ V \ {0} = (U + V ) \ (U ∪ V ).

Proof. Since U \ {0} + V \ {0} is a subset of U + V , it suffices to show that

(U \ {0}+ V \ {0}) ∩ (U ∪ V ) = ∅. To this end, suppose x ∈ U \ {0} + V \ {0}.

Then x = u + v for some nonzero vectors u ∈ U and v ∈ V . Since U ∩ V = {0}, it

follows that x /∈ U and x /∈ V , that is, x /∈ U ∪ V . Likewise, if x ∈ U ∪ V , then the

fact that U ∩ V = {0} implies x = u + v for some u ∈ U and v ∈ V where either u

or v is zero. Hence, x /∈ U \ {0}+ V \ {0}, completing the proof.

Theorem 3.4. Consider Φ = {ϕn}Nn=1 ⊆ RM and the intensity measurement map-

ping A : RM/{±1} → RN defined by (A(x))(n) := |〈x, ϕn〉|2. Suppose Φ spans RM

and each ϕn is nonzero. Then A is almost injective if and only if the Minkowski
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sum span(ΦS)⊥ + span(ΦSc)⊥ is a proper subspace of RM for each nonempty proper

subset S ⊆ {1, . . . , N}.

Note that this result is not terribly surprising considering Lemma 3.2, as the

new condition involves a simpler Minkowski sum in exchange for additional (rea-

sonable and testable) assumptions on Φ. The proof of this theorem amounts to

measuring the difference between the two Minkowski sums:

Proof of Theorem 3.4. First note that the spanning assumption on Φ implies

span(ΦS)⊥ ∩ span(ΦSc)⊥ =
(
span(ΦS) + span(ΦSc)

)⊥
= span(Φ)⊥ = {0},

and so applying Lemma 3.3 yields the following identity:

span(ΦS)⊥ \ {0}+ span(ΦSc)⊥ \ {0}

=
(
span(ΦS)⊥ + span(ΦSc)⊥

)
\
(
span(ΦS)⊥ ∪ span(ΦSc)⊥

)
. (23)

From Lemma 3.2 we know that A is almost injective if and only if almost ev-

ery x ∈ RM is not in the Minkowski sum span(ΦS)⊥ \ {0} + span(ΦSc)⊥ \ {0}

for any S ⊆ {1, . . . , N}. In other words, the Lebesgue measure (which we de-

note by Leb[·]) of this Minkowski sum is zero for each S ⊆ {1, . . . , N}. By (23),

this equivalently means that the Lebesgue measure of
(
span(ΦS)⊥ + span(ΦSc)⊥

)
\(

span(ΦS)⊥ ∪ span(ΦSc)⊥
)

is zero for each S ⊆ {1, . . . , N}. Since Φ spans RM ,

this set is empty (and therefore has Lebesgue measure zero) when S = ∅ or S =

{1, . . . , N}. Also, since each ϕn is nonzero, we know that span(ΦS)⊥ and span(ΦSc)⊥

are proper subspaces of RM whenever S is a nonempty proper subset of {1, . . . , N},

and so in these cases both subspaces must have Lebesgue measure zero. As such, we
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have that for every nonempty proper subset S ⊆ {1, . . . , N},

Leb
[(

span(ΦS)⊥ + span(ΦSc)⊥
)
\
(
span(ΦS)⊥ ∪ span(ΦSc)⊥

)]
≥ Leb

[
span(ΦS)⊥ + span(ΦSc)⊥

]
− Leb

[
span(ΦS)⊥

]
− Leb

[
span(ΦSc)⊥

]
= Leb

[
span(ΦS)⊥ + span(ΦSc)⊥

]
≥ Leb

[(
span(ΦS)⊥ + span(ΦSc)⊥

)
\
(
span(ΦS)⊥ ∪ span(ΦSc)⊥

)]
.

In summary,
(
span(ΦS)⊥ + span(ΦSc)⊥

)
\
(
span(ΦS)⊥ ∪ span(ΦSc)⊥

)
having Lebesgue

measure zero for each S ⊆ {1, . . . , N} is equivalent to span(ΦS)⊥+ span(ΦSc)⊥ hav-

ing Lebesgue measure zero for each nonempty proper subset S ⊆ {1, . . . , N}, which

in turn is equivalent to the Minkowski sum span(ΦS)⊥ + span(ΦSc)⊥ being a proper

subspace of RM for each nonempty proper subset S ⊆ {1, . . . , N}, as desired.

At this point, consider the following stronger restatement of Theorem 3.4:

“Suppose each ϕn is nonzero. Then A is almost injective if and only if Φ spans

RM and the Minkowski sum span(ΦS)⊥+span(ΦSc)⊥ is a proper subspace of RM for

each nonempty proper subset S ⊆ {1, . . . , N}.” Note that we can move the spanning

assumption into the condition because if Φ does not span, then we can decompose

almost every x ∈ RM as x = u + v such that u ∈ span(Φ) and v ∈ span(Φ)⊥

with v 6= 0, and defining y := u − v then gives A(y) = A(x) despite the fact that

y 6= ±x. As for the assumption that the ϕn’s are nonzero, we note that having

ϕn = 0 amounts to having the nth entry of A(x) be zero for all x. As such, Φ yields

almost injectivity precisely when the nonzero members of Φ together yield almost

injectivity. With this identification, the stronger restatement of Theorem 3.4 above

can be viewed as a complete characterization of almost injectivity. Next, we will

replace the Minkowski sum condition with a rather elegant condition involving the

ranks of ΦS and ΦSc by applying the following lemma:

Lemma 3.5 (Inclusion-exclusion principle for subspaces). Let U and V be subspaces

of a common vector space. Then dim(U + V ) = dimU + dimV − dim(U ∩ V ).
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Proof. Let A be a basis for U∩V and let B and C be bases for U and V , respectively,

such that A ⊆ B and A ⊆ C. It can be shown that A ∪ B ∪ C forms a basis for

U + V , which implies that

dim(U+V ) = |A|+ |B \A|+ |C \A| = |B|+ |C|−|A| = dimU+dimV −dim(U ∩V ),

completing the proof.

Theorem 3.6. Consider Φ = {ϕn}Nn=1 ⊆ RM and the intensity measurement map-

ping A : RM/{±1} → RN defined by (A(x))(n) := |〈x, ϕn〉|2. Suppose each ϕn is

nonzero. Then A is almost injective if and only if Φ spans RM and rank ΦS +

rank ΦSc > M for each nonempty proper subset S ⊆ {1, . . . , N}.

Proof. Considering the discussion after the proof of Theorem 3.4, it suffices to assume

that Φ spans RM . Furthermore, considering Theorem 3.4, it suffices to characterize

when dim
(
span(ΦS)⊥ + span(ΦSc)⊥

)
< M . By Lemma 3.5, we have

dim
(
span(ΦS)⊥ + span(ΦSc)⊥

)
= dim

(
span(ΦS)⊥

)
+ dim

(
span(ΦSc)⊥

)
− dim

(
span(ΦS)⊥ ∩ span(ΦSc)⊥

)
.

Since Φ is assumed to span RM , we also have that span(ΦS)⊥ ∩ span(ΦSc)⊥ = {0},

and so

dim
(
span(ΦS)⊥ + span(ΦSc)⊥

)
=
(
M − dim (span(ΦS))

)
+
(
M − dim (span(ΦSc))

)
− 0

= 2M − rank ΦS − rank ΦSc .

As such, dim
(
span(ΦS)⊥ + span(ΦSc)⊥

)
< M precisely when rank ΦS + rank ΦSc >

M .
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At this point, we point out some interesting consequences of Theorem 3.6.

First of all, Φ cannot be almost injective if N < M + 1 since rank ΦS + rank ΦSc ≤

|S| + |Sc| = N . Also, in the case where N = M + 1, we note that Φ is almost

injective precisely when Φ is full spark, that is, every size-M subcollection is a

spanning set (note this implies that all of the ϕn’s are nonzero). In fact, every full

spark Φ with N ≥ M + 1 yields almost injective intensity measurements, which

in turn implies that a generic Φ yields almost injectivity when N ≥ M + 1 [8].

This is in direct analogy with injectivity in the real case; here, injectivity requires

N ≥ 2M − 1, injectivity with N = 2M − 1 is equivalent to being full spark, and

being full spark suffices for injectivity whenever N ≥ 2M − 1 [8]. Another thing to

check is that the condition for injectivity implies the condition for almost injectivity:

Since the mapping A is injective for real Φ if and only if Φ is CP, it follows that

rank ΦS +rank ΦSc ≥M+1 > M for every nonempty proper subset S ⊆ {1, . . . , N}.

Having established that full spark ensembles of size N ≥ M + 1 yield almost

injective intensity measurements, we note that checking whether a matrix is full

spark is NP-hard in general [70]. Granted, there are a few explicit constructions

of full spark ensembles which can be used [4, 81], but it would be nice to have a

condition which is not computationally difficult to test in general. We provide one

such condition in the next theorem, but first, we briefly review the requisite frame

theory.

A frame is an ensemble Φ = {ϕn}Nn=1 ⊆ RM together with frame bounds

0 < A ≤ B <∞ with the property that for every x ∈ RM ,

A‖x‖2 ≤
N∑
n=1

|〈x, ϕn〉|2 ≤ B‖x‖2.

When A = B, the frame is said to be tight, and such frames come with a painless

reconstruction formula:

x =
1

A

N∑
n=1

〈x, ϕn〉ϕn.
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To be clear, the theory of frames originated in the context of infinite-dimensional

Hilbert spaces [41,46], and frames have since been studied in finite-dimensional set-

tings, primarily because this is the setting in which they are applied computationally.

Of particular interest are so-called unit norm tight frames (UNTFs), which are tight

frames whose frame elements have unit norm: ‖ϕn‖ = 1 for every n = 1, . . . , N . Such

frames are useful in applications; for example, if one encodes a signal x using frame

coefficients 〈x, ϕn〉 and transmits these coefficients across a channel, then UNTFs are

optimally robust to noise [58] and one erasure [32]. Intuitively, this optimality comes

from the fact that frame elements of a UNTF are particularly well-distributed in the

unit sphere [14]. Another pleasant feature of UNTFs is that it is straightforward to

test whether a given frame is a UNTF: Letting Φ = [ϕ1 · · ·ϕN ] denote an M × N

matrix whose columns are the frame elements, then Φ is a UNTF precisely when

each of the following occurs simultaneously:

(i) the rows have equal norm

(ii) the rows are orthogonal

(iii) the columns have unit-norm

(This is a direct consequence of the tight frame’s reconstruction formula and the

fact that a UNTF has unit-norm frame elements; furthermore, since the columns

have unit-norm, it is not difficult to see that the rows will necessarily have norm√
N/M .) In addition to being able to test that an ensemble is a UNTF, various

UNTFs can be constructed using spectral tetris [30] (though such frames necessarily

have N ≥ 2M), and every UNTF can be constructed using the recent theory of

eigensteps [20,53]. Now that UNTFs have been properly introduced, we relate them

to almost injectivity for phase retrieval:

Theorem 3.7. If M and N are relatively prime, then every unit norm tight frame

Φ = {ϕn}Nn=1 ⊆ RM yields almost injective intensity measurements.
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Proof. Pick a nonempty proper subset S ⊆ {1, . . . , N}. By Theorem 3.6, it suffices to

show that rank ΦS + rank ΦSc > M , or equivalently, rank ΦSΦ∗S + rank ΦScΦ∗Sc > M .

Note that since Φ is a unit norm tight frame, we also have

ΦSΦ∗S + ΦScΦ∗Sc = ΦΦ∗ = N
M
I,

and so ΦSΦ∗S and ΦScΦ∗Sc are simultaneously diagonalizable, i.e., there exists a uni-

tary matrix U and diagonal matrices D1 and D2 such that

UD1U
∗ + UD2U

∗ = ΦSΦ∗S + ΦScΦ∗Sc = N
M
I.

Conjugating by U∗, this then implies that D1 + D2 = N
M
I. Let L1 ⊆ {1, . . . ,M}

denote the diagonal locations of the nonzero entries in D1, and L2 ⊆ {1, . . . ,M}

similarly for D2. To complete the proof, we need to show that |L1|+ |L2| > M (since

|L1| + |L2| = rank ΦSΦ∗S + rank ΦScΦ∗Sc). Note that L1 ∪ L2 6= {1, . . . ,M} would

imply that D1 +D2 has at least one zero in its diagonal, contradicting the fact that

D1 + D2 is a nonzero multiple of the identity; as such, L1 ∪ L2 = {1, . . . ,M} and

|L1|+|L2| ≥M . We claim that this inequality is strict due to the assumption that M

and N are relatively prime. To see this, it suffices to show that L1∩L2 is nonempty.

Suppose to the contrary that L1 and L2 are disjoint. Then since D1 + D2 = N
M
I,

every nonzero entry in D1 must be N/M . Since S is a nonempty proper subset of

{1, . . . , N}, this means that there exists K ∈ (0,M) such that D1 has K entries

which are N/M and M −K which are 0. Thus,

|S| = Tr[Φ∗SΦS] = Tr[ΦSΦ∗S] = Tr[UD1U
∗] = Tr[D1] = K(N/M),

implying that N/M = |S|/K with K 6= M and |S| 6= N . Since this contradicts the

assumption that N/M is in lowest form, we have the desired result.
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Figure 2: The simplex in R3. Pointing out of the page is the vector 1√
3

(1, 1, 1), while the other vectors are the
three permutations of 1√

3
(1,−1,−1). Together, these four vectors form a unit norm tight frame, and since

M = 3 and N = 4 are relatively prime, these yield almost injective intensity measurements in accordance
with Theorem 3.7. For this ensemble, the points x such that A−1(A(x)) 6= {±x} are contained in the three
coordinate planes. Above, we depict the intersection between these planes and the unit sphere. According
to Theorem 3.9, performing phase retrieval with simplices such as this is NP-hard.

In general, whether a UNTF Φ yields almost injective intensity measurements

is determined by whether it is orthogonally partitionable: Φ is orthogonally partition-

able if there exists a partition S tSc = {1, . . . , N} such that span(ΦS) is orthogonal

to span(ΦSc). Specifically, a UNTF yields almost injective intensity measurements

precisely when it is not orthogonally partitionable. Historically, this property of

UNTFs has been pivotal to the understanding of singularities in the algebraic va-

riety of UNTFs [47], and it has also played a key role in solutions to the Paulsen

problem [16, 29]. However, it is not clear in general how to efficiently test for this

property; this is why Theorem 3.7 is so powerful.

3.2 The computational complexity of phase retrieval

The previous section characterized the real ensembles which yield almost in-

jective intensity measurements. The benefit of seeking almost injectivity instead of

injectivity is that we can get away with much smaller ensembles. For example, The-

orem 3.7 implies that a full spark ensemble in RM of size M + 1 suffices for almost

injectivity, while 2M − 1 measurements are required for injectivity (Theorem 2.2).
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In this section, we demonstrate that this savings in the number of measurements

can come at a substantial price in computational requirements for phase retrieval.

In particular, we consider the following problem:

Problem 3.8. Let F = {ΦM}∞M=2 be a family of ensembles ΦM = {ϕM ;n}N(M)
n=1 ⊆

RM , where N(M) = poly(M). Then ConsistentIntensities[F ] is the following

problem: Given M ≥ 2 and a rational sequence {bn}N(M)
n=1 , does there exist x ∈ RM

such that |〈x, ϕM ;n〉| = bn for every n = 1, . . . , N(M)?

In this section, we will evaluate the computational complexity of the problem

ConsistentIntensities[F ] for a large class of families of small ensembles F , but

first, we briefly review the main concepts involved. Complexity theory is chiefly

concerned with complexity classes, which are sets of problems that share certain

computational requirements, such as time or space. For example, the complexity

class P is the set of problems which can be solved in an amount of time that is

bounded by some polynomial of the bit-length of the input. As another example,

NP contains all problems for which an affirmative answer comes with a certificate that

can be verified in polynomial time; note that P ⊆ NP since for every problem A ∈ P,

one may ignore the certificate and find the affirmative answer in polynomial time.

One key tool that is used to evaluate the complexity of a problem is called polynomial-

time reduction. This is a polynomial-time algorithm that solves a problem A by

exploiting an oracle which solves another problem B, indicating that solving A is no

harder than solving B (up to polynomial factors in time); if such a reduction exists,

we write A ≤ B. For example, any efficient phase retrieval procedure for F can

be used as a subroutine to solve ConsistentIntensities[F ], indicating that phase

retrieval for F is at least as hard as ConsistentIntensities[F ]. A problem B is

called NP-hard if B ≥ A for every problem A ∈ NP. Note that since ≤ is transitive,

it suffices to show that B ≥ C for some NP-hard problem C. Finally, a problem B is

called NP-complete if B ∈ NP is NP-hard; intuitively, NP-complete problems are the

hardest of problems in NP. It is an open problem whether P = NP, but inequality
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is widely believed [39]; note that under this assumption, NP-hard problems have no

computationally efficient solution. This provides a proper context for the main result

of this section:

Theorem 3.9. Let F = {ΦM}∞M=2 denote a family of full spark ensembles ΦM =

{ϕM ;n}M+1
n=1 ⊆ RM with rational entries that can be computed in polynomial time.

Then ConsistentIntensities[F ] is NP-complete.

Note that since the ensembles ΦM are full spark, the existence of a solution

to the phase retrieval problem |〈x, ϕM ;n〉| = bn for every n = 1, . . . ,M + 1 implies

uniqueness by Theorem 3.6. Before proving this theorem, we first relate it to a pre-

vious hardness result from [82]. Specifically, this result can be restated using the ter-

minology in this paper as follows: There exists a family F = {ΦM}∞M=2 of ensembles

ΦM = {ϕM ;n}2M
n=1 ⊆ CM , each of which yielding almost injective intensity measure-

ments, such that ConsistentIntensities[F ] is NP-complete. Interestingly, these

are the smallest possible almost injective ensembles in the complex case, and we

suspect that the result can be strengthened to the obvious analogy of Theorem 3.9:

Conjecture 3.10. Let F = {ΦM}∞M=2 be a family of ensembles ΦM = {ϕM ;n}2M
n=1 ⊆

CM which yield almost injective intensity measurements and have complex rational

entries that can be computed in polynomial time. Then ConsistentIntensities[F ]

is NP-complete.

To prove Theorem 3.9, we devise a polynomial-time reduction from the follow-

ing problem which is well-known to be NP-complete [68]:

Problem 3.11 (SubsetSum). Given a finite collection of integers A and an integer

z, does there exist a subset S ⊆ A such that
∑

a∈S a = z?

Proof of Theorem 3.9. We first show that ConsistentIntensities[F ] is in NP.

Note that if there exists an x ∈ RM such that |〈x, ϕM ;n〉| = bn for every n =

1, . . . ,M + 1, then x will have all rational entries. Indeed, v := Φ∗Mx has all ra-

tional entries, being a signed version of {bn}M+1
n=1 , and so x = (ΦMΦ∗M)−1ΦMv is
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also rational. Thus, we can view x as a certificate of finite bit-length, and for each

n = 1, . . . ,M + 1, we know that |〈x, ϕM ;n〉| = bn can be verified in time which is

polynomial in this bit-length, as desired.

Now we show that ConsistentIntensities[F ] is NP-hard by reduction from

SubsetSum. To this end, take a finite collection of integers A and an integer z.

Set M := |A| and label the members of A as {am}Mm=1. Let Ψ denote the M ×M

matrix whose columns are the first M members of ΦM . Since ΦM is full spark, Ψ is

invertible and Ψ−1ΦM has the form [I w], where w has all nonzero entries; indeed, if

the mth entry of w were zero, then ΦM \ {ϕM ;m} would not span, violating the full

spark property of ΦM . Now define

bn :=


∣∣∣∣ anwn

∣∣∣∣ if n = 1, . . . ,M∣∣∣∣2z − M∑
m=1

am

∣∣∣∣ if n = M + 1.
(24)

We claim that an oracle for ConsistentIntensities[F ] would return “yes” from

the inputs M and {bn}M+1
n=1 defined above if and only if there exists a subset S ⊆ A

such that
∑

a∈S a = z, which would complete the reduction.

To prove this claim, we start with (⇒): Suppose there exists x ∈ RM such that

|〈x, ϕM ;n〉| = bn for every n = 1, . . . ,M+1. Then y := Ψ∗x satisfies |〈y,Ψ−1ϕM ;n〉| =

bn for every n = 1, . . . ,M + 1. Since Ψ−1ΦM = [I w], then by (24), the entries of y

satisfy

|ym| =
∣∣∣∣ amwm

∣∣∣∣ ∀m = 1, . . . ,M and

∣∣∣∣ M∑
m=1

ymwm

∣∣∣∣ =

∣∣∣∣2z − M∑
m=1

am

∣∣∣∣.
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By the first equation above, there exists a sequence {εm}Mm=1 of ±1’s such that

ym = εmam/wm for every m = 1, . . . ,M , and so the second equation above gives

∣∣∣∣2z − M∑
m=1

am

∣∣∣∣ =

∣∣∣∣ M∑
m=1

ymwm

∣∣∣∣ =

∣∣∣∣ M∑
m=1

εmam

∣∣∣∣
=

∣∣∣∣ M∑
m=1
εm=1

am −
M∑
m=1
εm=−1

am

∣∣∣∣ =

∣∣∣∣2 M∑
m=1
εm=1

am −
M∑
m=1

am

∣∣∣∣.
Removing the absolute values, this means the left-hand side above is equal to the

right-hand side, up to a sign factor. At this point, isolating z reveals that z =∑
m∈S am, where S is either {m : εm = 1} or {m : εm = −1}, depending on the sign

factor.

For (⇐), suppose there is a subset S ⊆ {1, . . . ,M} such that z =
∑

m∈S am.

Define εm := 1 when m ∈ S and εm := −1 when m 6∈ S. Then

∣∣∣∣ M∑
m=1

εmam

∣∣∣∣ =

∣∣∣∣ M∑
m=1
εm=1

am −
M∑
m=1
εm=−1

am

∣∣∣∣ =

∣∣∣∣2 M∑
m=1
εm=1

am −
M∑
m=1

am

∣∣∣∣ =

∣∣∣∣2z − M∑
m=1

am

∣∣∣∣.
By the analysis from the (⇒) direction, taking ym := εmam/wm for each m =

1, . . . ,M then ensures that |〈y,Ψ−1ϕM ;n〉| = bn for every n = 1, . . . ,M + 1, which

in turn ensures that x := (Ψ∗)−1y satisfies |〈x, ϕM ;n〉| = bn for every n = 1, . . . ,M +

1.

Based on Theorem 3.9, there is no polynomial-time algorithm to perform phase

retrieval for minimal almost injective ensembles, assuming P 6= NP. On the other

hand, there exist ensembles of size 2M − 1 for which phase retrieval is particularly

efficient. For example, letting δM ;m ∈ RM denote the mth identity basis element,

consider the ensemble ΦM := {δM ;m}Mm=1∪{δM ;1+δM ;m}Mm=2; then one can reconstruct

(up to global phase) any x whose first entry is nonzero by first taking x̂(1) :=
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|〈x, δM ;1〉|, and then taking

x̂(m) :=
1

2x̂(1)

(
|〈x, δM ;1 + δM ;m〉|2 − |〈x, δM ;1〉|2 − |〈x, δM ;m〉|2

)
∀m = 2, . . . ,M.

Intuitively, we expect a redundancy threshold that determines whether phase re-

trieval can be efficient, and this suggests the following open problem: What is the

smallest C for which there exists a family of ensembles of size N = CM +o(M) such

that phase retrieval can be performed in polynomial time?

We now consider an interesting special case of Problem 3.8 for which an ap-

proximate solution can be computed in polynomial time: Take the ensemble Φ ∈ RM

to be the M ×M identity matrix with the all-ones vector as its (M + 1)st column.

Then |(Φ∗x)(n)| = bn for all n = 1, . . . ,M (abbreviated |Φ∗x| = b), where

bn :=


|xn| if n = 1, . . . ,M∣∣∣∣ M∑
m=1

xm

∣∣∣∣ if n = M + 1.

With this notation, we introduce Algorithm 2, which approximately solves the phase

retrieval problem for the intensity measurements |Φ∗x| = b. To discuss the perfor-

mance of this algorithm, it helps to consider the map
√
A, defined entrywise by

(
√
A(x))(n) := |〈x, ϕn〉|. This mapping is actually a near-isometry under a certain

metric and, unlike A, it admits desirable performance guarantees (for details, see

Section 4.1 of this paper).

Lemma 3.12. For M ≥ 2, let Φ be the M × (M + 1) matrix [I|w], wn = 1 for all

n = 1, . . . ,M , and take c = ε/2
√
M for any ε > 0. Then Algorithm 2 produces an

estimate x̂ such that
‖
√
A(x̂)−

√
A(x)‖2

‖x‖2

≤ ε

after O(M2.5ε−1) operations.
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Algorithm 2 Approximate |Φ∗x| = b solver for Φ = [I|w], wn = 1 for all n =
1, . . . ,M

Input: Rational vector b of length M + 1
Output: Approximate solution x̂ to |Φ∗x| = b

Fix a threshold c and set p := 1
2

∑M+1
m=1 bm

Initialize an (M + 1)×M matrix S of zeros
for j = 1 to M do

S =

[
s0 s0 + bj
s1 s1 + δjw

T

]
{δj is the discrete Dirac-δ function at j}

S = sort {S} {Sort S by its first row}
for k = 1 to {number of columns in S} do

Remove the kth column of S if its first entry is greater than p or within cp/M
of the first entry in the (k − 1)st column

end for
end for
if First entry of the last column of S is greater than or equal to (1− c)p then

Define εm = (−1)am where (a1, . . . , am) are the remaining entries of the last
column of S
Output: x̂ = (εmbm)Mm=1

else
Ouput: ”INCONSISTENT”

end if

Proof. Suppose x̂ ∈ RM is the estimate produced by Algorithm 2. Note that the

algorithm guarantees the first M entries of
√
A(x̂) are identical to those of

√
A(x),

and so ‖
√
A(x̂)−

√
A(x)‖2 =

∣∣∣|∑M
m=1 x̂m| − |

∑M
m=1 xm|

∣∣∣. Since

p =
1

2

M+1∑
m=1

bm =
1

2

M+1∑
n=1

|(Φ∗x)(n)| = 1

2

(
M∑
m=1

|xm|+
∣∣∣ M∑
m=1

xm

∣∣∣) ,
we see that |

∑M
m=1 xm| = 2p−

∑M
m=1 |xm| = 2p− ‖x‖1. Moreover, we have

∣∣∣∣ M∑
m=1

x̂m

∣∣∣∣ =

∣∣∣∣∑
x̂m≥0

|x̂m| −
∑
x̂m<0

|x̂m|
∣∣∣∣ =

∣∣∣∣‖x̂‖1 − 2
∑
x̂m<0

|x̂m|
∣∣∣∣,
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and so an application of the triangle inequality yields

‖
√
A(x̂)−

√
A(x)‖2 =

∣∣∣∣∣∣∣ M∑
m=1

x̂m

∣∣∣− ∣∣∣ M∑
m=1

xm

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣‖x̂‖1 − 2
∑
x̂m<0

|x̂m|
∣∣∣− |2p− ‖x‖1|

∣∣∣∣
≤
∣∣∣∣(‖x̂‖1 − 2

∑
x̂m<0

|x̂m|
)
− (2p− ‖x‖1)

∣∣∣∣ = 2
(
p−

∑
x̂m<0

|x̂m|
)
.

Since the algorithm ensures that
∑

x̂m<0 |x̂m| ≥ (1− c)p, this simplifies to

‖
√
A(x̂)−

√
A(x)‖2 ≤ 2cp ≤ 2

√
M c‖x‖2 = ε‖x‖2,

which rearranges to give the desired bound. To complete the proof, we count oper-

ations. The majority of the work in Algorithm 2 is done within the first for loop.

In fact, the remainder of the algorithm is performed in O(M) steps, so we will only

focus on the first loop. At each iteration, the number of operations performed on

the matrix S is dependent on the number of columns since for each column we add

a new column by incorporating the next entry of the vector b. Due to the trimming

step in the second for loop, however, we limit the number of columns kept at each

iteration, thereby limiting the number of operations performed. Since there can be

no more than p/(cp/M)) = M/c columns at any iteration, an upper bound on the

number of operations is M/c+O(M) = 2M2.5/ε+O(M) = O(M2.5ε−1).

Lemma 3.12 shows that Algorithm 2 produces an estimate whose intensity

measurements approximate the true intensity measurements. As such, one can ob-

tain an approximate solution to the phase retrieval problem for the ensemble Φ in

polynomial time if willing to work with the estimated intensity measurements:

Theorem 3.13. For M ≥ 2, let Φ be the M × (M + 1) matrix [I|w], wn = 1 for all

n = 1, . . . ,M , and suppose an estimate x̂ for x ∈ RM is produced by Algorithm 2.

Then for every nonempty proper subset S ⊆ {1, 2, . . . ,M + 1} and any ε > 0,

|
∑

m∈S xm| ≤
1
2
ε‖x‖2 and x̂ = ±x.
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Proof. We seek the contrapositive. First recall that the estimate x̂ produced by

Algorithm 2 has the property that ‖
√
A(x̂)−

√
A(x)‖2 =

∣∣∣|∑M
m=1 x̂m| − |

∑M
m=1 xm|

∣∣∣.
Now suppose that for every nonempty proper subset S ⊆ {1, 2, . . . ,M + 1} and any

ε > 0 we have |
∑

m∈S xm| >
1
2
ε‖x‖2 and assume x̂ 6= ±x. Then there exists a

nonempty proper subset S ⊆ {1, 2, . . . ,M + 1} such that x̂m = xm for all m ∈ S and

x̂m = −xm for all m ∈ Sc. Thus,

‖
√
A(x̂)−

√
A(x)‖2 =

∣∣∣∣∣∣∣∣
M∑
m=1

x̂m

∣∣∣− ∣∣∣ M∑
m=1

xm

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∑
m∈S

xm −
∑
m∈Sc

xm

∣∣∣− ∣∣∣∑
m∈S

xm +
∑
m∈Sc

xm

∣∣∣∣∣∣∣∣
= 2 min

{∣∣∣∑
m∈S

xm

∣∣∣, ∣∣∣ ∑
m∈Sc

xm

∣∣∣} ,
where the final equality follows from the relation

∣∣|a|− |b|∣∣ = min{|a+ b|, |a− b|} for

every a, b ∈ R. By the assumption on x we then have

‖
√
A(x̂)−

√
A(x)‖2 = 2 min

{∣∣∣∑
m∈S

xm

∣∣∣, ∣∣∣ ∑
m∈Sc

xm

∣∣∣} > ε‖x‖2,

violating the result of Lemma 3.12. Hence, x̂ could not have been produced by

Algorithm 2, as desired.

To be clear, in the average case it is still highly unlikely that the true signal

x is recoverable in non-exponential time from this type of ensemble. However, this

isn’t too surprising, since it is expected that the smallest constant C for which there

exists a family of ensembles of size N = CM + o(M) such that phase retrieval can

be performed in polynomial time is greater than one.
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IV. The stability of phase retrieval

In order for methods of phase retrieval to be useful for practical applications, they

must be able to combat noise. At the very least, we require some semblance of

continuity in the intensity measurement mapping; that is, if a signal’s intensity

measurements are perturbed slightly (e.g., by noise in the measurement process),

we seek a bound on the “closeness” of the estimated signal to the true signal. This

concept is known as stability, and it is the focus of this chapter. Here, we analyze

stability in phase retrieval for both the worst and average cases. For the former, we

develop a new condition which strengthens the complement property of Section 2.1;

for the latter, we use a stochastic noise model to develop stronger versions of the

injectivity characterizations of Chapter II.

4.1 Stability in the worst case

As far as applications are concerned, the stability of reconstruction is perhaps

the most important consideration. To date, the only known stability results come

from PhaseLift [27], the polarization method [3], and a very recent paper of Eldar

and Mendelson [49]. This last paper focuses on the real case, and analyzes how well

subgaussian random measurement vectors distinguish signals, thereby yielding some

notion of stability which is independent of the reconstruction algorithm used. In

particular, given independent random measurement vectors {ϕn}Nn=1 ⊆ RM , Eldar

and Mendelson evaluated measurement separation by finding a constant C such that

‖A(x)−A(y)‖1 ≥ C‖x− y‖2‖x+ y‖2 ∀x, y ∈ RM , (25)

where A : RM → RN is the intensity measurement process defined by (A(x))(n) :=

|〈x, ϕn〉|2. With this, we can say that if A(x) and A(y) are close, then x must

be close to either ±y, and even closer for larger C. By the contrapositive, distant

signals will not be confused in the measurement domain because A does a good job

of separating them.
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One interesting feature of (25) is that increasing the lengths of the measure-

ment vectors {ϕn}Nn=1 will in turn increase C, meaning the measurements are better

separated. As such, for any given magnitude of noise, one can simply amplify the

measurement process so as to drown out the noise and ensure stability. However,

such amplification could be rather expensive, and so this motivates a different notion

of stability—one that is invariant to how the measurement ensemble is scaled. One

approach is to build on intuition from Lemma 2.8; that is, a super analysis operator

is intuitively more stable if its null space is distant from all rank-2 operators simulta-

neously; since this null space is invariant to how the measurement vectors are scaled,

this is one prospective (and particularly geometric) notion of stability. In this sec-

tion, we will focus on another alternative. Note that d(x, y) := min{‖x−y‖, ‖x+y‖}

defines a metric on RM/{±1}, and consider the following:

Definition 4.1. We say f : RM/{±1} → RN is C-stable if for every SNR > 0,

there exists an estimator g : RN → RM/{±1} such that for every nonzero signal

x ∈ RM/{±1} and adversarial noise term z with ‖z‖2 ≤ ‖f(x)‖2/SNR, the relative

error in reconstruction satisfies

d
(
g(f(x) + z), x

)
‖x‖

≤ C√
SNR

.

According to this definition, f is more stable when C is smaller. Also, because

of the SNR (signal-to-noise ratio) model, f is C-stable if and only if every nonzero

multiple of f is also C-stable. Indeed, taking f̃ := cf for some nonzero scalar c, then

for every adversarial noise term z̃ which is admissible for f̃ and SNR, we have that

z := z̃/c is admissible for f(x) and SNR; as such, f̃ inherits f ’s C-stability by using

the estimator g̃ defined by g̃(y) := g(y/c). Overall, this notion of stability offers

the invariance to scaling we originally desired. With this, if we find a measurement

process f which is C-stable with minimal C, at that point, we can take advantage of
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noise with bounded magnitude by amplifying f (and thereby effectively increasing

SNR) until the relative error in reconstruction is tolerable.

Now that we have a notion of stability, we provide a sufficient condition:

Theorem 4.2. Suppose f is bilipschitz, that is, there exist constants 0 < α ≤ β <∞

such that

α d(x, y) ≤ ‖f(x)− f(y)‖ ≤ β d(x, y) ∀x, y ∈ RM/{±1}.

If f(0) = 0, then f is 2β
α

-stable.

Proof. Consider the projection function P : RN → RN defined by

P (y) := arg min
y′∈range(f)

‖y′ − y‖ ∀y ∈ RN .

In cases where the minimizer is not unique, we will pick one of them to be P (y).

For P to be well-defined, we claim it suffices for range(f) to be closed. Indeed,

this ensures that a minimizer always exists; since 0 ∈ range(f), any prospective

minimizer must be no farther from y than 0 is, meaning we can equivalently minimize

over the intersection of range(f) and the closed ball of radius ‖y‖ centered at y; this

intersection is compact, and so a minimizer necessarily exists. In order to avoid

using the axiom of choice, we also want a systematic method of breaking ties when

the minimizer is not unique, but this can be done using lexicographic ideas provided

range(f) is closed.

We now show that range(f) is, in fact, closed. Pick a convergent sequence

{yn}∞n=1 ⊆ range(f). This sequence is necessarily Cauchy, which means the corre-

sponding sequence of inverse images {xn}∞n=1 ⊆ RM/{±1} is also Cauchy (using the

lower Lipschitz bound α > 0). Arbitrarily pick a representative zn ∈ RM for each

xn. Then {zn}∞n=1 is bounded, and thus has a subsequence that converges to some

z ∈ RM . Denote x := {±z} ∈ RM/{±1}. Then d(xn, x) ≤ ‖zn− z‖, and so {xn}∞n=1
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has a subsequence which converges to x. Since {xn}∞n=1 is also Cauchy, we therefore

have xn → x. Then the upper Lipschitz bound β <∞ gives that f(x) ∈ range(f) is

the limit of {yn}∞n=1.

Now that we know P is well-defined, we continue. Since α > 0, we know f is

injective, and so we can take g := f−1 ◦P . In fact, α−1 is a Lipschitz bound for f−1,

implying

d
(
g(f(x) + z), x

)
= d
(
f−1
(
P (f(x) + z)

)
, f−1

(
f(x)

))
≤ α−1‖P (f(x) + z)− f(x)‖.

(26)

Furthermore, the triangle inequality and the definition of P together give

‖P (f(x) + z)− f(x)‖ ≤ ‖P (f(x) + z)− (f(x) + z)‖+ ‖z‖

≤ ‖f(x)− (f(x) + z)‖+ ‖z‖ = 2‖z‖. (27)

Combining (26) and (27) then gives

d
(
g(f(x) + z), x

)
‖x‖

≤ 2α−1 ‖z‖
‖x‖
≤ 2α−1

√
SNR

‖f(x)‖
‖x‖

=
2α−1

√
SNR

‖f(x)− f(0)‖
‖x− 0‖

≤ 2β/α√
SNR

,

as desired.

Note that the “project-and-invert” estimator we used to demonstrate stabil-

ity is far from new. For example, if the noise were modeled as Gaussian random,

then project-and-invert is precisely the maximum likelihood estimator. However,

stochastic noise models warrant a much deeper analysis, since in this regime one is

often concerned with the bias and variance of estimates. As such, we will investi-

gate these issues in the next section. Another example of project-and-invert is the

Moore-Penrose pseudoinverse of an N ×M matrix A of rank M . Using the obvious

reformulation of C-stable in this linear case, it can be shown that C is the condition

number of A, meaning α and β are analogous to the smallest and largest singular

values. The extra factor of 2 in the stability constant of Theorem 4.2 is an artifact
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of the nonlinear setting: For the sake of illustration, suppose range(f) is the unit

circle and f(x) = (−1, 0) but z = (1 + ε, 0); then P (f(x) + z) = (1, 0), which is just

shy of 2‖z‖ away from f(x). This sort of behavior is not exhibited in the linear case,

in which range(f) is a subspace.

Having established the sufficiency of bilipschitz for stability, we now note that

A is not bilipschitz. In fact, more generally, A fails to satisfy any Hölder condition.

To see this, pick some nonzero measurement vector ϕn and scalars C > 0 and α ≥ 0.

Then

‖A((C + 1)ϕn)−A(ϕn)‖
d((C + 1)ϕn, ϕn)α

=
1

‖Cϕn‖α

( N∑
n′=1

(
|〈(C + 1)ϕn, ϕn′〉|2 − |〈ϕn, ϕn′〉|2

)2
)1/2

=
(C + 1)2 − 1

Cα

‖A(ϕn)‖
‖ϕn‖α

.

Furthermore, ‖A(ϕn)‖ ≥ |(A(ϕn))(n)| = ‖ϕn‖4 > 0, while (C+1)2−1
Cα

diverges as

C → ∞, assuming α ≤ 1; when α > 1, it also diverges as C → 0, but this case is

not interesting for infamous reasons [73].

All is not lost, however. As we will see, with this notion of stability, it happens

to be more convenient to consider the map
√
A, defined entrywise by (

√
A(x))(n) :=

|〈x, ϕn〉|. Considering Theorem 4.2, we are chiefly interested in the optimal constants

0 < α ≤ β <∞ for which

α d(x, y) ≤ ‖
√
A(x)−

√
A(y)‖ ≤ β d(x, y) ∀x, y ∈ RM/{±1}. (28)

In particular, Theorem 4.2 guarantees more stability when α and β are closer to-

gether; this indicates that when suitably scaled, we want
√
A to act as a near-

isometry, despite being a nonlinear function. The following lemma gives the upper

Lipschitz constant:

Lemma 4.3. The upper Lipschitz constant for
√
A is β = ‖Φ∗‖2.
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Proof. By the reverse triangle inequality, we have

∣∣|a| − |b|∣∣ ≤ min
{
|a− b|, |a+ b|

}
∀a, b ∈ R.

Thus, for all x, y ∈ RM/{±1},

‖
√
A(x)−

√
A(y)‖2 =

N∑
n=1

∣∣|〈x, ϕn〉| − |〈y, ϕn〉|∣∣2
≤

N∑
n=1

(
min

{
|〈x− y, ϕn〉|, |〈x+ y, ϕn〉|

})2

≤ min
{
‖Φ∗(x− y)‖2, ‖Φ∗(x+ y)‖2

}
≤ ‖Φ∗‖2

2

(
d(x, y)

)2
. (29)

Furthermore, picking a nonzero x ∈ RM such that ‖Φ∗x‖ = ‖Φ∗‖2‖x‖ gives

‖
√
A(x)−

√
A(0)‖ = ‖

√
A(x)‖ = ‖Φ∗x‖ = ‖Φ∗‖2‖x‖ = ‖Φ∗‖2 d(x, 0),

thereby achieving equality in (29).

The lower Lipschitz bound is much more difficult to determine. Our approach

to analyzing this bound is based on the following definition:

Definition 4.4. We say an M × N matrix Φ satisfies the σ-strong complement

property (σ-SCP) if

max
{
λmin(ΦSΦ∗S), λmin(ΦScΦ∗Sc)

}
≥ σ2

for every S ⊆ {1, . . . , N}.

This is a numerical version of the complement property discussed earlier (Sec-

tion 2.1). It bears some resemblance to other matrix properties, namely combi-

natorial properties regarding the conditioning of submatrices, e.g., the restricted

72



isometry property [23], the Kadison-Singer problem [31] and numerically erasure-

robust frames [51]. We are interested in σ-SCP because it is very related to the

lower Lipschitz bound in (28):

Theorem 4.5. The lower Lipschitz constant for
√
A satisfies

σ ≤ α ≤
√

2σ,

where σ is the largest scalar for which Φ has the σ-strong complement property.

Proof. By analogy with the proof of Theorem 2.2, we start by proving the upper

bound. Pick ε > 0 and note that Φ is not (σ + ε)-SCP. Then there exists S ⊆

{1, . . . , N} such that both λmin(ΦSΦ∗S) < (σ+ε)2 and λmin(ΦScΦ∗Sc) < (σ+ε)2. This

implies that there exist unit (eigen) vectors u, v ∈ RM such that ‖Φ∗Su‖ < (σ+ε)‖u‖

and ‖Φ∗Scv‖ < (σ + ε)‖v‖. Taking x := u+ v and y := u− v then gives

‖
√
A(x)−

√
A(y)‖2 =

N∑
n=1

∣∣|〈u+ v, ϕn〉| − |〈u− v, ϕn〉|
∣∣2

=
∑
n∈S

∣∣|〈u+ v, ϕn〉| − |〈u− v, ϕn〉|
∣∣2

+
∑
n∈Sc

∣∣|〈u+ v, ϕn〉| − |〈u− v, ϕn〉|
∣∣2

≤ 4
∑
n∈S

|〈u, ϕn〉|2 + 4
∑
n∈Sc

|〈v, ϕn〉|2,

where the last step follows from the reverse triangle inequality. Next, we apply our

assumptions on u and v:

‖
√
A(x)−

√
A(y)‖2 ≤ 4

(
‖Φ∗Su‖2 + ‖Φ∗Scv‖2

)
< 4(σ + ε)2

(
‖u‖2 + ‖v‖2

)
= 8(σ + ε)2 min

{
‖u‖2, ‖v‖2

}
= 2(σ + ε)2

(
d(x, y)

)2
.
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Thus, α <
√

2(σ + ε) for all ε > 0, and so α ≤
√

2σ.

Next, to prove the lower bound, take ε > 0 and pick x, y ∈ RM/{±1} such

that

(α + ε) d(x, y) > ‖
√
A(x)−

√
A(y)‖.

We will show that Φ is not (α + ε)-SCP. To this end, pick

S := {n : sign〈x, ϕn〉 = − sign〈y, ϕn〉}

and define u := x+ y and v := x− y. Then the definition of S gives

‖Φ∗Su‖2 =
∑
n∈S

|〈x, ϕn〉+ 〈y, ϕn〉|2 =
∑
n∈S

∣∣|〈x, ϕn〉| − |〈y, ϕn〉|∣∣2,
and similarly ‖Φ∗Scv‖2 =

∑
n∈Sc

∣∣|〈x, ϕn〉| − |〈y, ϕn〉|∣∣2. Adding these together then

gives

‖Φ∗Su‖2 + ‖Φ∗Scv‖2 =
N∑
n=1

∣∣|〈x, ϕn〉| − |〈y, ϕn〉|∣∣2
= ‖
√
A(x)−

√
A(y)‖2 < (α + ε)2

(
d(x, y)

)2
,

implying both ‖Φ∗Su‖ < (α + ε)‖u‖ and ‖Φ∗Scv‖ < (α + ε)‖v‖. Therefore, Φ is not

(α + ε)-SCP, i.e., σ < α + ε for all ε > 0, which in turn implies the desired lower

bound.

Note that all of this analysis specifically treats the real case; indeed, the metric

we use would not be appropriate in the complex case. However, just like the com-

plement property is necessary for injectivity in the complex case (Theorem 2.6), it

is suspected that the strong complement property is necessary for stability in the

complex case, but we have no proof of this.
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As an example of how to apply Theorem 4.5, pick M and N to both be even

and let F = {fn}n∈ZN be the M
2
× N matrix obtained by collecting the first M

2

rows of the N × N discrete Fourier transform matrix with entries of unit-modulus.

Next, take Φ = {ϕn}n∈ZN to be the M ×N matrix formed by stacking the real and

imaginary parts of F and normalizing the resulting columns (i.e., multiplying by√
2/M). Then Φ happens to be a self-localized finite frame due to the rapid decay

in coherence between columns. To be explicit, first note that

|〈ϕn, ϕn′〉|2 = 4
M2 |〈Re fn,Re fn′〉+ 〈Im fn, Im fn′〉|2

≤ 4
M2

∣∣∣∣(〈Re fn,Re fn′〉+ 〈Im fn, Im fn′〉
)

+ i
(
〈Im fn,Re fn′〉 − 〈Re fn, Im fn′〉

)∣∣∣∣2
= 4

M2 |〈fn, fn′〉|2,

and furthermore, when n 6= n′, the geometric sum formula gives

|〈fn, fn′〉|2 =

∣∣∣∣M−1∑
m=0

e2πim(n−n′)/N
∣∣∣∣2 =

sin2(Mπ(n− n′)/N)

sin2(π(n− n′)/N)
≤ 1

sin2(π(n− n′)/N)
.

Taking u := ϕ0, v := ϕN/2 and S := {n : N
4
≤ n < 3N

4
}, we then have

‖Φ∗Su‖2

‖u‖2
= ‖Φ∗Su‖2 =

∑
n∈S

|〈ϕ0, ϕn〉|2 ≤
4

M2

∑
n∈S

1

sin2(πn/N)
≤ 4

M2
· N/2

sin2(π/4)
=

4N

M2
,

and similarly for
‖Φ∗Scv‖

2

‖v‖2 . As such, if N = o(M2), then Φ is σ-SCP only if σ van-

ishes, meaning phase retrieval with Φ necessarily lacks the stability guarantee of

Theorem 4.5. As a rule of thumb, self-localized frames fail to provide stable phase

retrieval for this very reason; just as we cannot stably distinguish between ϕ0 +ϕN/2

and ϕ0−ϕN/2 in this case, in general, signals consisting of “distant” components bring

similar instability. This intuition was first pointed out by Irene Waldspurger—here it
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is simply made more rigorous with the notion of σ-SCP. This means that stable phase

retrieval from localized measurements must either use prior information about the

signal (e.g., connected support) or additional measurements; indeed, this dichotomy

has already made its mark on the Fourier-based phase retrieval literature [50,65].

We can also apply the strong complement property to show that certain (ran-

dom) ensembles produce stable measurements. We will use the following lemma,

which is proved in the proof of Lemma 4.1 in [35]:

Lemma 4.6. Given n ≥ m ≥ 2, draw a real m×n matrix G of independent standard

normal entries. Then

Pr

(
λmin(GG∗) ≤ n

t2

)
≤ 1

Γ(n−m+ 2)

(
n

t

)n−m+1

∀t > 0.

Theorem 4.7. Draw an M×N matrix Φ with independent standard normal entries,

and denote R = N
M

. Provided R > 2, then for every ε > 0, Φ has the σ-strong

complement property with

σ =
1√

2e1+ε/(R−2)
· N − 2M + 2

2R/(R−2)
√
N
,

with probability greater than or equal to 1− e−εM .

Proof. Fix M and N , and consider the function f : (M − 2,∞)→ (0,∞) defined by

f(x) :=
1

Γ(x−M + 2)
(σ
√
x)x−M+1.

To simplify the analysis, we will assume that N is even, but the proof can be amended

to account for the odd case. Applying Lemma 4.6, we have for every subset S ⊆

{1, . . . , N} of size K that Pr(λmin(ΦSΦ∗S) < σ2) ≤ f(K), provided K ≥ M , and

similarly Pr(λmin(ΦScΦ∗Sc) < σ2) ≤ f(N −K), provided N −K ≥ M . We will use

this to bound the probability that Φ is not σ-SCP. Since λmin(ΦScΦ∗Sc) = 0 whenever
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|S| ≥ N −M + 1 and λmin(ΦSΦ∗S) ≤ λmin(ΦTΦ∗T ) whenever S ⊆ T , a union bound

gives

Pr
(

Φ is not σ-SCP
)

= Pr
(
∃S ⊆ {1, . . . , N} s.t. λmin(ΦSΦ∗S) < σ2 and λmin(ΦScΦ∗Sc) < σ2

)
≤ Pr

(
∃S ⊆ {1, . . . , N}, |S| = N −M + 1, s.t. λmin(ΦSΦ∗S) < σ2

)
+ Pr

(
∃S ⊆ {1, . . . , N},M ≤ |S| ≤ N −M,

s.t. λmin(ΦSΦ∗S) < σ2 and λmin(ΦScΦ∗Sc) < σ2
)

≤
(

N

N −M + 1

)
f(N −M + 1) +

1

2

N−M∑
K=M

(
N

K

)
f(K)f(N −K), (30)

where the last inequality follows in part from the fact that both λmin(ΦSΦ∗S) and

λmin(ΦScΦ∗Sc) are independent random variables, and the factor 1
2

is an artifact of

double counting partitions. We will further bound each term in (30) to get a simpler

expression. First,
(

2k
k

)
≥ 2k for all k and so

f(N −M + 1) ≤ 1

Γ(N − 2M + 3)
(σ
√
N)N−2M+2

≤ 1

Γ(N − 2M + 3)
(σ
√
N)N−2M+2 · 1

2
N
2
−M+1

(
N − 2M + 2
N
2
−M + 1

)
= f(N

2
)2.

Next, we will find that g(x) := f(x)f(N −x) is maximized at x = N
2

. To do this, we

first find the critical points of g. Since 0 = g′(x) = f ′(x)f(N − x)− f(x)f ′(N − x),

we have
d

dy
log f(y)

∣∣∣∣
y=x

=
f ′(x)

f(x)
=
f ′(N − x)

f(N − x)
=

d

dy
log f(y)

∣∣∣∣
y=N−x

. (31)

To analyze this further, we take another derivative:

d2

dy2
log f(y) =

1

2y
+
M − 1

2y2
− d2

dy2
log Γ(y −M + 2). (32)
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It is straightforward to see that

1

2y
+
M − 1

2y2
≤ 1

y −M + 2
=

∫ ∞
y−M+2

dt

t2

<
∞∑
k=0

1

(y −M + 2 + k)2
=

d2

dy2
log Γ(y −M + 2),

where the last step uses a series expression for the trigamma function ψ1(z) :=

d2

dz2
log Γ(z); see Section 6.4 of [1]. Applying this to (32) then gives that d2

dy2
log f(y) <

0, which in turn implies that d
dy

log f(y) is strictly decreasing in y. Thus, (31) requires

x = N − x, and so x = N
2

is the only critical point of g. Furthermore, to see that

this is a maximizer, notice that

g′′(N
2

) = 2f(N
2

)2 ·
f ′′(N

2
)f(N

2
)− f ′(N

2
)2

f(N
2

)2

= 2f(N
2

)2 · d
dy

f ′(y)

f(y)

∣∣∣∣
y=N

2

= 2f(N
2

)2 · d
2

dy2
log f(y)

∣∣∣∣
y=N

2

< 0.

To summarize, we have that f(N −M + 1) and f(K)f(N − K) are both at most

f(N
2

)2. This leads to the following bound on (30):

Pr
(

Φ is not σ-SCP
)
≤ 1

2

N∑
K=0

(
N

K

)
f(N

2
)2

= 2N−1f(N
2

)2 =
2N−1

Γ(N
2
−M + 2)2

(
σ
√

N
2

)N−2M+2

.

Finally, applying the fact that Γ(k + 1) ≥ e(k
e
)k gives

Pr
(

Φ is not σ-SCP
)
≤ 2N−1

e2

(
σe
√

2 ·
√
N

N − 2M + 2

)N−2M+2

=
2RM

2e2

(
e−ε/(R−2)2−R/(R−2)

)(R−2)M+2

≤ 2RM(eε2R)−M = e−εM ,
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Figure 3: The graph on the left depicts log10 b(R) as a function of R, which is defined in (33). Modulo ε terms, this
serves as an upper bound on log10(2‖Φ∗‖2/σ) with high probability as M →∞, where Φ is an M ×RM
matrix of independent standard Gaussian entries. Based on Theorem 4.2 (along with Lemma 4.3 and
Theorem 4.5), this provides a stability guarantee for the corresponding measurement process, namely

√
A.

Since log10 b(R) exhibits an asymptote at R = 2, this gives no stability guarantee for measurement ensem-
bles of redundancy 2. The next three graphs consider the special cases where M = 2, 4, 6, respectively. In
each case, the dashed curve depicts the slightly stronger upper bound of log10 a(R,M), defined in (33).
Also depicted, for each R ∈ {2, 2.5, 3, 3.5, 4}, are 30 realizations of log10(2‖Φ∗‖2/σ); we provide a piece-
wise linear graph connecting the sample averages for clarity. Notice that as M increases, log10 a(R,M)
approaches log10 b(R); this is easily seen by their definitions in (33). More interestingly, the random real-
izations also appear to be approaching log10 b(R); this is most notable with the realizations corresponding
to R = 2. To be clear, we use σ as a proxy for α (see Theorem 4.5) because α is particularly difficult to
obtain; as such, we do not plot realizations of log10(2β/α).

as claimed.

Considering ‖Φ∗‖2 ≤ (1+ε)(
√
N+
√
M) with probability≥ 1−2e−ε(

√
N

2
+
√
M)2/2

(see Theorem II.13 of [42]), we can leverage Theorem 4.7 to determine the stability

of a Gaussian measurement ensemble. Specifically, by Theorem 4.2 (along with

Lemma 4.3 and Theorem 4.5) we have that such measurements are C-stable with

C =
2β

α
≤ 2‖Φ∗‖2

σ
∼ 2(
√
N +

√
M) ·

√
2e · 2R/(R−2)

√
N

N − 2M + 2︸ ︷︷ ︸
a(R,M)

≤ 2
√

2e

(
R +
√
R

R− 2

)
2R/(R−2)︸ ︷︷ ︸

b(R)

(33)

Figure 3 illustrates these bounds along with different realizations of 2‖Φ∗‖2/σ. This

suggests that the redundancy of the measurement process is the main factor that

determines stability of a random measurement ensemble (and that bounded redun-
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dancies suffice for stability). Furthermore, the project-and-invert estimator will yield

particularly stable signal reconstruction, although it is not obvious how to efficiently

implement this estimator; this is one advantage given by the reconstruction algo-

rithms in [3, 27].

4.2 Stability in the average case

Suppose a random variable Y is drawn according to some unknown member

of a parameterized family of probability density functions {f(·; θ)}θ∈Ω. The Fisher

information J(θ) quantifies how much information about the unknown parameter θ

is given by the random variable on average. This is particularly useful in statistical

signal processing, where a signal measurement is corrupted by random noise, and

the original signal is viewed as a parameter of the random measurement’s unknown

probability density function; as such, the Fisher information quantifies how useful

the noisy measurement is for signal estimation.

In this section, we will apply the theory of Fisher information to evaluate

the stability of the intensity measurement mapping A. To do this, we consider a

stochastic noise model, that is, given some signal x, we take measurements of the

form Y = A(x) + Z, where the entries of Z are independent Gaussian random

variables with mean 0 and variance σ2. We want to use Y to estimate x up to a

global phase factor; to simplify the analysis, we will estimate a particular θ(x) ≡ x,

specifically (and arbitrarily) x divided by the phase of its last nonzero entry. As

such, Y is a random vector with probability density function

f(y; θ) =
1

(2πσ2)N/2
e−‖y−A(θ)‖2/2σ2 ∀y ∈ RN . (34)

To be clear, many of the results that follow are consequences of the fact that (34) is

a member of the exponential family of distributions; we go through the analysis here

since the relevant literature may be less familiar to the phase retrieval community.
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With the probability density function (34), we can calculate the Fisher infor-

mation matrix, defined entrywise by

(
J(θ)

)
ij

:= E
[(

∂

∂θi
log f(Y ; θ)

)(
∂

∂θj
log f(Y ; θ)

)∣∣∣∣θ]. (35)

In particular, we have

∂

∂θi
log f(y; θ) =

∂

∂θi

(
− 1

2σ2

N∑
n=1

(
yn −

(
A(θ)

)
n

)2
)

=
1

σ2

N∑
n=1

(
yn −

(
A(θ)

)
n

) ∂

∂θi

(
A(θ)

)
n
,

and so applying (35) along with the independence of the entries of Z gives

(
J(θ)

)
ij

=
1

σ4

N∑
n=1

N∑
n′=1

∂

∂θi

(
A(θ)

)
n

∂

∂θj

(
A(θ)

)
n′
E[ZnZn′ ]

=
1

σ2

N∑
n=1

∂

∂θi

(
A(θ)

)
n

∂

∂θj

(
A(θ)

)
n
.

It remains to take partial derivatives ofA(θ), but this calculation depends on whether

θ is real or complex. In the real case, we have

∂

∂θi

(
A(θ)

)
n

=
∂

∂θi

( M∑
m=1

θmϕn(m)

)2

= 2

( M∑
m=1

θmϕn(m)

)
ϕn(i).

Thus, if we take Ψ(θ) to be the M×N matrix whose nth column is 〈θ, ϕn〉ϕn, then the

Fisher information matrix can be expressed as J(θ) = 4
σ2 Ψ(θ)Ψ(θ)∗. Interestingly,

Theorem 2.2 implies that J(θ) is necessarily positive definite when A is injective.

To see this, suppose there exists θ ∈ Ω such that J(θ) has a nontrivial null space.

Then {〈θ, ϕn〉ϕn}Nn=1 does not span RM , and so S = {n : 〈θ, ϕn〉 = 0} breaks

the complement property. As the following result shows, when A is injective, the

conditioning of J(θ) lends some insight into stability:
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Theorem 4.8. For x ∈ RM , let Y = A(x)+Z denote noisy intensity measurements

with Z having independent N (0, σ2) entries. Furthermore, define the parameter θ

to be x divided by the sign of its last nonzero entry; let Ω ⊆ RM denote all such θ.

Then for any unbiased estimator θ̂(Y ) of θ in Ω with a finite M ×M covariance

matrix C(θ̂), we have C(θ̂)− J(θ)−1 is positive semidefinite whenever θ ∈ int(Ω).

This result was first given by Balan (see Theorem 4.1 in [5]). Note that the

requirement that θ be in the interior of Ω can be weakened to θ 6= 0 by recognizing

that our choice for θ (dividing by the sign of the last nonzero entry) was arbitrary.

To interpret this theorem, note that

Tr[C(θ̂)] = Tr[E[(θ̂(Y )− θ)(θ̂(Y )− θ)T]]

= E[Tr[(θ̂(Y )− θ)(θ̂(Y )− θ)T]]

= E[Tr[(θ̂(Y )− θ)T(θ̂(Y )− θ)]] = E‖θ̂(Y )− θ‖2,

and so Theorem 4.8 and the linearity of the trace together give E‖θ̂(Y ) − θ‖2 =

Tr[C(θ̂)] ≥ Tr[J(θ)−1]. In the previous section, Definition 4.1 provided a notion

of worst-case stability based on the existence of an estimator with small error. By

analogy, Theorem 4.8 demonstrates a converse of sorts: that no unbiased estimator

will have mean squared error smaller than Tr[J(θ)−1]. As such, a stable measure-

ment ensemble might minimize supθ∈Ω Tr[J(θ)−1], although this is a particularly

cumbersome objective function to work with. More interestingly, Theorem 4.8 pro-

vides another numerical strengthening of the complement property (analogous to the

σ-strong complement property of the previous section). Unfortunately, we cannot

make a more rigorous comparison between the worst- and average-case analyses of

stability; indeed, our worst-case analysis exploited the fact that
√
A is bilipschitz

(which A is not), and as we shall see, the average-case analysis depends on A being

differentiable (which
√
A is not).
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To calculate the information matrix in the complex case, we first express our

parameter vector in real coordinates: θ = (θ1 + iθM+1, θ2 + iθM+2, . . . , θM + iθ2M),

that is, we view θ as a 2M -dimensional real vector by concatenating its real and

imaginary parts. Next, for any arbitrary function g : R2M → C, the product rule

gives

∂

∂θi
|g(θ)|2 =

∂

∂θi
g(θ)g(θ) =

(
∂

∂θi
g(θ)

)
g(θ) + g(θ)

(
∂

∂θi
g(θ)

)
= 2 Re g(θ)

∂

∂θi
g(θ).

(36)

Since we care about partial derivatives of A(θ), we take

g(θ) = 〈θ, ϕn〉 =
M∑
m=1

(θm + iθM+m)ϕn(m),

and so

∂

∂θi
g(θ) =

 ϕn(i) if i ≤M

−iϕn(i−M) if i > M.
(37)

Combining (36) and (37) then gives the following expression for the Fisher informa-

tion matrix: Take Ψ(θ) to be the 2M × N matrix whose nth column is formed by

stacking the real and imaginary parts of 〈θ, ϕn〉ϕn; then J(θ) = 4
σ2 Ψ(θ)Ψ(θ)∗.

Lemma 4.9. Take J̃(θ) to be the (2M − 1) × (2M − 1) matrix that comes from

removing the last row and column of J(θ). If A is injective, then J̃(θ) is positive

definite for every θ ∈ int(Ω).

Proof. First, we note that J(θ) = 4
σ2 Ψ(θ)Ψ(θ)∗ is necessarily positive semidefinite,

and so

inf
‖x‖=1

xTJ̃(θ)x = inf
‖x‖=1

[x; 0]TJ(θ)[x; 0] ≥ inf
‖y‖=1

yTJ(θ)y ≥ 0.

As such, it suffices to show that J̃(θ) is invertible.

To this end, take any vector x in the null space of J̃(θ). Then defining y :=

[x; 0] ∈ R2M , we have that J(θ)y is zero in all but (possibly) the 2Mth entry. As
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such, 0 = 〈y, J(θ)y〉 = ‖ 2
σ
Ψ(θ)∗y‖2, meaning y is orthogonal to the columns of Ψ(θ).

Since A is injective, Theorem 2.3 then gives that y = αiθ for some α ∈ R. But since

θ ∈ int(Ω), we have θM > 0, and so the 2Mth entry of iθ is necessarily nonzero. This

means α = 0, and so y (and thus x) is trivial.

Theorem 4.10. For x ∈ CM , let Y = A(x)+Z denote noisy intensity measurements

with Z having independent N (0, σ2) entries. Furthermore, define the parameter θ to

be x divided by the phase of its last nonzero entry, and view θ as a vector in R2M by

concatenating its real and imaginary parts; let Ω ⊆ R2M denote all such θ. Then for

any unbiased estimator θ̂(Y ) of θ in Ω with a finite 2M×2M covariance matrix C(θ̂),

the last row and column of C(θ̂) are both zero, and the remaining (2M−1)×(2M−1)

submatrix C̃(θ̂) has the property that C̃(θ̂)− J̃(θ)−1 is positive semidefinite whenever

θ ∈ int(Ω).

Proof. We start by following the usual proof of the vector parameter Cramer-Rao

lower bound (see for example Appendix 3B of [69]). Note that for any i, j ∈

{1, . . . , 2M},

∫
RN

(
(θ̂(y))j − θj

)∂ log f(y; θ)

∂θi
f(y; θ)dy

=

∫
RN

(θ̂(y))j
∂f(y; θ)

∂θi
dy − θj

∫
RN

∂f(y; θ)

∂θi
dy

=
∂

∂θi

∫
RN

(θ̂(y))jf(y; θ)dy − θj
∂

∂θi

∫
RN
f(y; θ)dy,

where the second equality is by differentiation under the integral sign (see Lemma A.1

in Appendix A for details; here, we use the fact that θ̂ has a finite covariance matrix

so that θ̂j has a finite second moment). Next, we use the facts that θ̂ is unbiased

and f(·; θ) is a probability density function (regardless of θ) to get

∫
RN

(
(θ̂(y))j − θj

)∂ log f(y; θ)

∂θi
f(y; θ)dy =

∂θj
∂θi

=

 1 if i = j

0 if i 6= j
.
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Thus, letting ∇θ log f(y; θ) denote the column vector whose ith entry is ∂ log f(y;θ)
∂θi

,

we have

I =

∫
RN

(
θ̂(y)− θ

)(
∇θ log f(y; θ)

)T
f(y; θ)dy.

Equivalently, we have that for all column vectors a, b ∈ R2M ,

aTb =

∫
RN
aT
(
θ̂(y)− θ

)(
∇θ log f(y; θ)

)T
b f(y; θ)dy.

Next, we apply the Cauchy-Schwarz inequality in f -weighted L2 space to get

(
aTb
)2

=

(∫
RN
aT
(
θ̂(y)− θ

)(
∇θ log f(y; θ)

)T
b f(y; θ)dy

)2

≤
∫
RN
aT
(
θ̂(y)− θ

)(
θ̂(y)− θ

)T
a f(y; θ)dy

×
∫
RN
bT
(
∇θ log f(y; θ)

)(
∇θ log f(y; θ)

)T
b f(y; θ)dy

=
(
aTC(θ̂)a

)(
bTJ(θ)b

)
,

where the last step follows from pulling vectors out of integrals. Taking b :=

[J̃(θ)−1ã; 0], where ã is the first 2M − 1 entries of a, this then implies

(
ãTJ̃(θ)−1ã

)2
=
(
aTb
)2 ≤

(
aTC(θ̂)a

)(
bTJ(θ)b

)
=
(
aTC(θ̂)a

)(
ãTJ̃(θ)−1ã

)
. (38)

At this point, we note that since the last (complex) entry of θ ∈ Ω is necessarily

positive, then as a 2M -dimensional real vector, the last entry is necessarily zero,

and furthermore every unbiased estimator θ̂ in Ω will also vanish in the last entry.

It follows that the last row and column of C(θ̂) are both zero. Furthermore, since

J̃(θ)−1 is positive definite by Lemma 4.9, division in (38) gives

(
ãTJ̃(θ)−1ã

)
≤
(
aTC(θ̂)a

)
=
(
ãTC̃(θ̂)ã

)
,

from which the result follows.
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V. The phase error problem in synthetic aperture radar

Now that we’ve developed an intuition for phase retrieval, we return to the phase

error problem in synthetic aperture radar. We begin by formally deriving phase

errors in the bistatic setting, at which point we relate the problem to a certain

interferometric approach to phase retrieval [3]. This motivates the use of graphs

to organize the given SAR data, and then we can leverage an algorithm known as

angular synchronization to recover the phase errors. The remainder of the chapter is

dedicated to developing this algorithmic approach to solving the phase error problem,

and we conclude with simulations that illustrate its stability to noise.

5.1 Synthetic aperture radar

As discussed in Chapter I, SAR is a form of microwave radar that uses relative

motion between a source and scene to reconstruct an image of the scene with finer

resolution than possible with traditional radar. SAR is typically implemented in a

monostatic setting, usually as a single source on a moving platform (e.g., an aircraft

or satellite) which repeatedly transmits a fixed microwave signal to the target scene

and records the resultant reflected signal. As a result, the scene is imaged at various

locations; each reflected signal provides information about the scene from a different

perspective, allowing for finer resolution in the final reconstruction. In this section,

we will consider airborne SAR, where the radar source is located on a moving aircraft.

Since the speed of light far exceeds that of the aircraft, the transmitted and reflected

signals will effectively travel to and from the aircraft along the same path.

To see how airborne SAR works, consider a two-dimensional scene

D := {x = (x1, x2)> ∈ R2 : x2
1 + x2

2 ≤ β2},

with magnetic reflectivity described by the function ρ : R2 → R; the reflectivity is

taken to be zero outside of the region D for simplicity. The assumption that the

scene is two-dimensional is possible only if elevations within the scene are relatively
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constant in comparison to the radius β; here, we operate under this assumption.

Taking the position of the aircraft to be r ∈ R2, where ‖r‖ � β, the Pythagorean

Theorem yields

‖x− r‖2 =
∣∣〈x− r, r

‖r‖〉
∣∣2 +

∣∣〈x− r, Ar‖r‖〉∣∣2
for every vector x ∈ D, where A ∈ R2×2 is the rotation matrix

A =

 0 −1

1 0

 .
Since r and Ar are orthogonal, we then obtain

∣∣〈x− r, Ar‖r‖〉∣∣ =
∣∣〈x, Ar‖r‖〉 − 〈r, Ar‖r‖〉∣∣ =

∣∣〈x, Ar‖r‖〉∣∣ ≤ ‖x‖‖Ar‖‖r‖
≤ β

by an application of the Cauchy–Schwarz inequality, and so we have

‖x− r‖2 ≤
∣∣〈x− r, r

‖r‖〉
∣∣2 + β2.

Noting that the radius β is quite small relative to the distance ‖r‖, this allows

the approximation ‖x − r‖ ≈ |〈x − r, z〉|, where z := −r/‖r‖ is the bearing vector

between the aircraft and the scene; that is, z is the unit vector that determines the

direction from the aircraft to the center of the scene. Essentially, this approximation

makes use of the assumption ‖r‖ � β to conclude that arcs of constant distance

from the aircraft intersect the scene as straight lines perpendicular to its bearing

vector z; such lines are referred to as lines of constant range, and so each distance

in the direction of the bearing vector defines a unique line of constant range. In

most applications of airborne SAR, this approximation is nearly sharp [48], and so

we consider ‖x− r‖ ≈ |〈x− r, z〉| for every x ∈ D.
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Suppose the aircraft transmits a signal f , which is then reflected by the scene

and returned to the aircraft as the signal g. Making the reasonable assumption that

the speed of light far exceeds that of the aircraft, we know that f and g will travel

the same path to and from any point x ∈ D; hence, both signals will travel the same

distance, namely ‖x− r‖. As a result, we expect the received signal to be given by

g(t) =

∫∫
D

f
(
t− 2

c
‖x− r‖

)
ρ(x)dx1dx2 ≈

∫∫
D

f
(
t− 2

c
〈x− r, z〉

)
ρ(x)dx1dx2.

More generally, if the signal f is transmitted at a position r1, then the received signal

at any point r2 is

g(t) ≈
∫∫
D

f
(
t− 1

c

(
〈x− r1, z1〉+ 〈x− r2, z2〉

))
ρ(x)dx1dx2, (39)

where z1 := −r1/‖r1‖, z2 := −r2/‖r2‖, and it is assumed that ‖r1‖ � β and

‖r2‖ � β, i.e., the transmitter and receiver are both sufficiently far from the scene.

For a fixed transmitter and receiver, it is unclear how to distinguish two points

x, y ∈ D, x 6= y, given the signal g recorded over a period of time. The problem,

which we discuss in the monostatic setting for simplicity, is two-fold: First, points

along any line of constant range are necessarily indiscernible, since their radar sig-

natures return to the source at exactly the same time. Hence, each recorded signal

only contains information about the integrated reflectivity function along each line

of constant range. The fix for this is the so-called synthetic aperture, which is the

effective distance the aircraft travels while repeatedly imaging the scene. As the

aircraft moves across the synthetic aperture, the lines of constant range rotate, and

so each recorded signal encodes the integrated reflectivity function along a differ-

ent set of lines through the scene [48]. Hence, wider synthetic apertures yield more

information about lines of constant range.
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The second problem is distinguishing points of differing distances from the

aircraft. Although the radar signatures of such points return to the source at different

times, the relative size of the scene (and the magnitude of the speed of light) cause

them to overlap if the transmission duration is too small. Indeed, if the signal is

of constant frequency, then it is impossible to tell two such points apart, regardless

of the duration of the transmission. On the other hand, if the transmitted signal

is a superposition of a range of frequencies (i.e., a burst), then it is possible to

distinguish positions within the scene according to time of arrival, provided the

duration of transmission is large enough. However, transmitting a burst is expensive

and impractical due to power limitations.

To avoid this issue, a commonly used technique in airborne SAR is taking the

transmitted signal f to be a linear chirp [48]. That is, let f(τ) := e2πi( 1
2
vτ2+wτ), with

instantaneous frequency

f ′(τ)

2πif(τ)
=

2πi(vτ + w)e2πi( 1
2
vτ2+wτ)

2πie2πi( 1
2
vτ2+wτ)

= vτ + w.

Here, v is known as the chirp rate and w the base frequency. Notice that the instanta-

neous frequency of a chirp is linear in time; this enables points at different distances

from the aircraft to be distinguished by extending the transmission duration (essen-

tially amplifying relative distances) with a low power requirement. If the synthetic

aperture is wide enough and contains enough transmission points, the resulting col-

lection of line integrals of the reflectivity function is sufficient to distinguish all points

within the scene [48].

Under the appropriate assumptions on the chirp rate of the transmitted signal,

the reflected signal has a convenient form in terms of the two-dimensional Fourier

transform F : L1(R2)→ L∞(R2) defined by

(Fh)(p, q) =

∫∫
R2

h(x, y)e−2πi〈(p,q),(x,y)〉dxdy
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for every h ∈ L1(R2). One way in which this result is formulated is by viewing each

line integral of the reflectivity function as a one-dimensional Fourier transform and

applying the Projection-Slice Theorem (see Section 2.3.2 in [48]). Alternatively, one

could work entirely in two-dimensions using linear operators. The general result,

proven by the latter approach, is given in the following:

Fact 5.1. Let r1, r2 ∈ R2, with ‖r1‖ � β and ‖r2‖ � β, and f be a chirp with chirp

rate v and base frequency w. Furthermore, suppose that the signal f is emitted at

position r1 and the reflected signal g is received at r2, as in (39). If v � c2

β(‖r1‖+‖r2‖)2 ,

then

g(t) ≈ f(t)e−2πi(vt+w) 1
c
(‖r1‖+‖r2‖)(Fρ)

(
1
c
(vt+ w)(z1 + z2)

)
.

Before proving this, we require some definitions. Consider the modulation

and translation operators E and T defined respectively by (Eh)(t) = e2πith(t) and

(Th)(t) = h(t − 1) for any signal h : R → C. These two operators act on a chirp

f(τ) = e2πi( 1
2
vτ2+wτ) in a particular way: For any a ∈ R,

(T af)(τ) = f(τ − a) = e2πi( 1
2
v(τ−a)2+w(τ−a))

= e2πi(( 1
2
va2+wa)−avτ+( 1

2
vτ2+wτ))

= e2πi( 1
2
va2−wa)e2πi(−avt)f(τ) = e2πi( 1

2
va2−wa)(E−avf)(τ).

Proof of Fact 5.1. Recall the form of the received signal (39). Defining the parameter

tx := 1
c
(〈x− r1, z1〉+ 〈x− r2, z2〉), we obtain

g(t) ≈
∫∫
D

f(t− tx)ρ(x)dx1dx2 =

∫∫
D

(
T txf

)
(t)ρ(x)dx1dx2

=

∫∫
D

e2πi( 1
2
vt2x−wtx)

(
E−vtxf

)
(t)ρ(x)dx1dx2

=

∫∫
D

eπivt2xe−2πiwtxe−2πi(vt)txf(t)ρ(x)dx1dx2.
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Now consider the signal

ĝ(t) :=

∫∫
D

e−2πiwtxe−2πi(vt)txf(t)ρ(x)dx1dx2.

Then

|ĝ(t)− g(t)| =
∣∣∣∣∫∫
D

(
1− eπivt2x

)
e−2πiwtxe−2πi(vt)txf(t)ρ(x)dx1dx2

∣∣∣∣
≤
∫∫
D

∣∣1− eπivt2x
∣∣|ρ(x)|dx1dx2

≤

(∫∫
D

∣∣1− eπivt2x
∣∣2dx1dx2

)1/2(∫∫
D

|ρ(x)|2dx1dx2

)1/2

,

where the last inequality follows from Cauchy–Schwarz. By considering a Taylor

series, it can be seen that |1 − eiθ|2 = 2(1 − cos(θ)) ≤ θ2 for any θ ∈ R, and so it

follows that

|ĝ(t)− g(t)| ≤ ‖ρ‖L2

(∫∫
D

(
πvt2x

)2
dx1dx2

)1/2

.

To bound the parameter tx, first note that the Cauchy–Schwarz inequality yields

tx = 1
c

(
〈x− r1, z1〉+ 〈x− r2, z2〉

)
= 1

c

(〈
x− r1,

−r1
‖r1‖

〉
+
〈
x− r2,

−r2
‖r2‖

〉)
= 1

c

(
‖r1‖+ ‖r2‖ −

〈
x, r1
‖r1‖

〉
−
〈
x, r2
‖r2‖

〉)
≤ 1

c
(‖r1‖+ ‖r2‖+ 2‖x‖) ,

and so, over the region D, we obtain 0 ≤ tx ≤ 2
c
(‖r1‖+ ‖r2‖). Thus,

|ĝ(t)− g(t)| ≤ ‖ρ‖L2

(
4πv
c2

(‖r1‖+ ‖r2‖)2
)
(πβ2)1/2 = 4βv

c2
· π3/2‖ρ‖L2(‖r1‖+ ‖r2‖)2.
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Recalling the assumption v � c2

β(‖r1‖+‖r2‖)2 , this bound implies that the signal ĝ

approximates the received signal, and so we may write

g(t) ≈ ĝ(t) = f(t)

∫∫
D

e−2πi(vt+w)txρ(x)dx1dx2.

Since tx = 1
c
(‖r1‖+ ‖r2‖+ 〈x, z1 + z2〉), it follows that

g(t) ≈ f(t)e−2πi(vt+w) 1
c
(‖r1‖+‖r2‖)

∫∫
R2

e−2πi(vt+w)〈x,z1+z2〉ρ(x)dx1dx2

= f(t)e−2πi(vt+w) 1
c
(‖r1‖+‖r2‖)(Fρ)

(
1
c
(vt+ w)(z1 + z2)

)
,

completing the proof.

The implication of Fact 5.1 is that the received signal is a modulated version of

the original transmitted signal times the Fourier transform of the reflectivity function

along the line through the scene which bisects the lines defined by the bearing vectors

z1, z2. For a single aircraft with position r, the lemma yields

g(t) = f(t)e−2πi(vt+w) 2
c
‖r‖(Fρ)

(
2
c
(vt+ w)z

)
, (40)

provided the chirp rate of f is chosen such that v � c2

2β‖r‖ . Thus, as the aircraft moves

across the synthetic aperture, each received signal encodes the Fourier transform of

the reflectivity function along a different line through the scene, namely, those lines

defined by the bearing vectors of the transmission locations. Consequently, the image

of the scene can be reconstructed if enough samples are taken to enable the entire

Fourier transform to be built via interpolation. This is how SAR is implemented in

practice.

The issue that arises with this implementation is the presence of phase error.

This phase error is actually a consequence of relative uncertainty in the distance ‖r‖

at each transmission location, which directly impacts the modulation and phase fac-
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tors which precede the Fourier transform in (40). Small fluctuations in this distance,

which are relatively common due to factors such as aircraft performance, weather,

wind, and pilot skill, result in noticeable phase differences between the received sig-

nals [18]. As a result, each line of the Fourier transform of the reflectivity function

obtained is skewed by an independent modulation and phase factor. Since estimating

the modulation is possible by conventional methods [48], one could use interpolation

to obtain the complete Fourier transform of the reflectivity function (up to a global

phase factor) if these phase factors were all the same, which would then enable im-

age reconstruction. Unfortunately, the uncertainties in target distance are typically

uncorrelated, and so any image reconstruction algorithm must first clear this hurdle.

In practice, modern inertial navigation systems are capable of keeping the

uncertainty in the distance ‖r‖ small enough to render the modulating term in (40)

negligible [48]. The remaining phase error, however, cannot be eliminated in this way.

Two methods are used to deal with the phase error: One method is to use motion

sensors on the aircraft to detect fluctuations in the flight path, which can be used to

compute a correction to ‖r‖ and determine the phase errors directly [63]. The second

method, known as autofocus, is more widely used—it estimates the phase errors from

the raw data under a priori assumptions on the image model [44]. Common autofocus

algorithms include phase gradient and map drift [21, 28]; of these, phase gradient is

usually preferred since the phase estimation portion of the algorithm is known to be

optimal in a maximum-likelihood sense [48].

As an alternative, if we introduce additional information to the data set, it may

be possible to completely determine the phase errors during image reconstruction.

Suppose we insert a second aircraft into the SAR imaging process. Let the two

aircraft have positions r1 and r3, with bearing vectors z1 and z3, respectively (position

r2 and bearing vector z2 will be introduced later). Suppose aircraft i transmits the

chirp f(τ) = e2πi( 1
2
vτ2+wτ) with chirp rate satisfying v � c2

β(‖ri‖2+‖rj‖2)
. Then, by
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Fact 5.1, we expect the received signal at aircraft j to be of the form

gi→j(t) := f(t)e−2πi(vt+w) 1
c
(‖ri‖+‖rj‖)(Fρ)

(
1
c
(vt+ w)(zi + zj)

)
; (41)

when i 6= j, this type of signature is characteristic of bistatic radar.

Consider the three received signals g1→1, g3→3, and g1→3 obtained from (41).

If we combine these signals in a particular way, we can eliminate the modulations

and phase factors:

g1→1(t)g1→3(t) 2g3→3(t)

= f(t)e−2πi(vt+w) 2
c
‖r1‖(Fρ)

(
2
c
(vt+ w)z1

)
×
(
f(t)e−2πi(vt+w) 1

c
(‖r1‖+‖r3‖)(Fρ)

(
1
c
(vt+ w)(z1 + z3)

))2

× f(t)e−2πi(vt+w) 2
c
‖r3‖(Fρ)

(
2
c
(vt+ w)z3

)
= |f(t)|4(Fρ)

(
2
c
(vt+ w)z1

) (
(Fρ)

(
1
c
(vt+ w)(z1 + z3)

))2

(Fρ)
(

2
c
(vt+ w)z3

)
.

The modulation and phase factors completely cancel, and what remains is simply

the magnitude of the original signal times a product of Fourier transforms of the

reflectivity function along lines through the scene defined by the unit vectors z1, z3

and their bisector z2 := z1+z3
‖z1+z3‖ . This interferometric effect bears some resemblance

to that leveraged by Alexeev, Bandeira, Fickus and Mixon in [3] to solve the phase

retrieval problem.

Before exploring this connection, it is important to note that the Fourier trans-

forms of the reflectivity function in the combination above are taken along lines

through the scene that are scaled differently (since z1 + z3 is not twice a unit vec-

tor). Hence, the parameterization of this line differs from those of the other lines,

making them incompatible in Cartesian coordinates. Theoretically, this is not an

issue; indeed, we may still obtain the Fourier transform of the reflectivity function

via interpolation in polar coordinates. However, there is no fast algorithm for taking
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the inverse Fourier transform of the result. In order to take advantage of the fast

Fourier transform (FFT), one must first convert the data to rectangular form, and so

this scaling issue needs to be addressed. Monostatic SAR also encounters this prob-

lem, which can be solved by a process called polar-to-rectangular resampling [48].

Essentially, this process enables the data along any line of the Fourier transform of

the reflectivity function to be properly scaled without influencing the integrity of the

data. Hence, knowing Fρ along a line through the scene with any scaling factor is

enough to determine Fρ along that same line with any other scaling factor. Denoting

the ith slice of the Fourier transform Fρ by

hi(t) := (Fρ)
(

2
c
(vt+ w)zi

)
, (42)

this allows the above expression to be rearranged:

h1(t)h2(t) 2h3(t) =
(
K(t)

)−2

g1→1(t)g1→3(t) 2g3→3(t), (43)

where K(t) denotes the quantity

K(t) := |f(t)|2
(Fρ)

(
1
c
(vt+ w)(z1 + z3)

)
(Fρ)

(
1
c
(vt+ w)

(
z1+z3
‖z1+z3‖

)) = |f(t)|2
(Fρ)

(
1
c
(vt+ w)(z1 + z3)

)
h2(t)

.

Note that K(t) can be calculated by first estimating (Fρ)(1
c
(vt + w)(z1 + z3)) up

to a global phase factor (by removing the modulation from g1→3 using conventional

techniques [48]) and then using this to estimate h2(t) up to the same phase factor

by dilation and translation. Hence, there is no ambiguity in the phase of K(t).

At this point, it is useful to identify that each slice hi of Fρ can be obtained

from the corresponding monostatic signal

gi→i(t) = f(t)e−2πi(vt+w) 2
c
‖ri‖hi(t).
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(a) (b)

Figure 4: (a) A triple of aircraft positions (r1, r2, r3) in a multistatic SAR scheme. (b) Using conventional techniques,
the monostatic signals gi→i associated with each bearing vector zi produce the depicted slices hi of the
Fourier transform of the reflectivity function of the scene, up to distinct global phase factors ωi. Meanwhile,
the bistatic signal g1→3 transmitted at r1 and received at r3 produces a dilated and translated version
of the slice h2. By Fact 5.2, this additional signal combines with the monostatic signals to determine the
product ω1ω

−2
2 ω3 of unknown phases.

Again by conventional techniques [48], we can estimate hi(t) from gi→i(t) up to

a global phase factor ωi. Thus, we get the estimates ĥi(t) := ωihi(t) from the

monostatic signal at position ri. Expressing the received signals g1→1, g3→3, and

g1→3 in terms of these estimates, (43) implies

ω1ω
−2
2 ω3 =

ĥ1(t)ĥ2(t) 2ĥ3(t)

h1(t)h2(t) 2h3(t)
, (44)

and so the bistatic signal g1→3 (when combined with g1→1, g2→2, and g3→3) enables

one to recover a product of the phase factors of h1, h2, and h3 (see Figure 4 for an

illustration). We summarize this situation in the following fact:

Fact 5.2. Pick r1, r2, r3 ∈ R2 such that r1 +r3 is a positive scalar multiple of r2, and

let f be a chirp with chirp rate v and base frequency w satisfying the hypotheses of

Fact 5.1. Suppose we obtain the signals g1→1, g2→2, g3→3 as defined in (41). Then

conventional techniques [48] yield the estimates ĥi(t) = ωihi(t) for each i = 1, 2, 3.

Here, hi(t) denotes the ith slice of the desired Fourier transform (42), and ωi is

an unknown phase factor. Furthermore, if we obtain g1→3, then combining with the
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other signals according to (43) and (44) determines the product ω1ω
−2
2 ω3 of unknown

phase factors.

Since the magnitudes of the Fourier transform slices hi can be obtained from

the corresponding monostatic signals, determining these slices up to a single global

phase requires determining the phase errors ωi from products of the form (44). No-

tice that these products can be expressed in terms of relative phases: ω1ω
−2
2 ω3 =

(ω1ω
−1
2 )(ω2ω

−1
3 )−1. Defining the relative phases σ1,2 := ω1ω

−1
2 and σ2,3 := ω2ω

−1
3 , we

see that this quantity is itself a relative phase of relative phases: ω1ω
−2
2 ω3 = σ1,2σ

−1
2,3.

If this bistatic process is implemented while the two aircraft move across the syn-

thetic aperture, it is possible to record such a quotient of relative phases for each

triple (ri, rj, rk) of locations realized by their flight paths. Extracting the individ-

ual phase errors from this collection of products is then possible via an algorithm

used by Bandeira et al. in [3] to solve the phase retrieval problem, namely, angular

synchronization.

5.2 Angular synchronization

The angular synchronization algorithm, as first introduced by Singer in [84],

estimates a set of unknown phases using (noisy) measurements of relative phase.

The idea is to organize the phase and relative phase information using a graph

G, from which certain spectral methods enable the desired estimation with little

computational burden. Furthermore, the algorithm is provably stable, provided the

graph G is “nice” enough. Here, the proper notion of “nice” is in terms of the

connectivity of G.

To set the stage, suppose we want to estimate a vector of phases ω := {ωi}i∈V ⊆

C for some finite set V given a set of relative phase measurements {ωiω−1
j }(i,j)∈E,

where E ⊆ V × V . Consider the simple graph G = (V,E) so that each vertex in V

represents an unknown phase and each edge in G a relative phase measurement. In
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particular, i ∈ V represents the phase ωi, while (i, j) ∈ E if and only if i, j ∈ V and

we have the measurement ωiω
−1
j .

Notice that in the noiseless case, it is possible to recover the vector ω (up to a

global phase) if and only if G is connected [84]. Indeed, in this case one may choose

a spanning tree T of G and compute each phase ωi by propagating from vertex to

vertex using edges in T . To be clear, by propagate we mean multiply the phase at

vertex i by the relative phase ωjω
−1
i to obtain the phase at vertex j. The global

phase ambiguity arises from the choice of starting phase, i.e., the phase assigned to

the root of T [84]. Unfortunately, this approach does not work in the noisy case;

in fact, this method actually compounds the noise by adding another noise term at

each vertex.

Instead of propagating the relative phases along only the edges in T , suppose

that we propagate along every edge in E. If there are no cycles in G, then this

exhibits the same problem as above. However, cycles provide a means of “noise

cancellation.” To see this, suppose C is a cycle in G. Choosing two vertices i, j ∈ C,

there are two paths in C from i to j. Thus, we can choose to propagate the phase at

vertex i along either of these paths to obtain the phase at vertex j, knowing that we

expect to obtain the same result regardless of which path we choose. Due to noise, it

is unlikely that one will obtain the same result for both paths, but the two differing

phases at vertex j provide a means for comparison. In particular, if we take j = i,

then the sum of the phase errors along C must be zero modulo 2π; this cancellation

provides a means of combating the noise. Hence, the more cycles there are in G, the

more such comparisons one can make. This observation suggests that graphs with

many cycles are desirable, a quality which is present in highly connected graphs. This

idea is what led Bandeira et al. to exploit an (optimally connected) expander graph

to solve the phase retrieval problem using O(M logM) intensity measurements [3].

What follows is a more in-depth discussion of angular synchronization, but

first we require some definitions from spectral graph theory. For a simple, connected
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graph with n vertices, let A denote the adjacency matrix and D the diagonal matrix

of vertex degrees, {di}ni=1 ⊆ N. The Laplacian of the graph is defined to be the

matrix L := I − D−1/2AD−1/2, which is positive semidefinite since for any x ∈ Cn

we have

x∗Lx = ‖x‖2 −
n∑
i=1

n∑
j=1

x∗iA[i, j]xj√
didj

≥ ‖x‖2 −
n∑
i=1

n∑
j=1

x∗ixj = 0

with equality when x is the vector whose entries are all 1; here, the inequality follows

from the fact that didj ≥ 1 whenever A[i, j] = 1. Hence, the spectrum of L satisfies

0 = λ1 ≤ · · · ≤ λn. The second eigenvalue λ2 of the Laplacian is known as the

spectral gap of the graph. As discussed in [3], a highly connected graph necessarily

has a large spectral gap.

Returning to the graph G = (V,E) defined above, let ε := {εij}(i,j)∈E denote

a vector of adversarial noise terms. Since we seek to propagate phase along edges,

note that the noisy relative phase ωiω
−1
j + εij is associated with a direction, namely,

propagation from vertex i to vertex j. For the reverse direction, we take the noisy

relative phase ωjω
−1
i + εji = ωiω

−1
j + εij. Let A1 denote the weighted adjacency

matrix of G, defined entrywise by

A1[i, j] :=
ωiω

−1
j + εij

|ωiω−1
j + εij|

. (45)

Note that A1 is self-adjoint and each entry A1[i, j] is an approximation of the relative

phase ωiω
−1
j . Considering this, it makes sense that we may obtain the vertex phases

{ωi}i∈V from A1 by solving the minimization problem

ω̂ = arg min
{ωi}i∈V ⊆T

∑
(i,j)∈E

|ωi − A1[i, j]ωj|2 . (46)

One method of (approximately) solving this problem is angular synchronization,

which is summarized in Algorithm 3 (cf. [3]).
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Algorithm 3 Angular synchronization

Input: Graph G = (V,E), noisy relative phases ωiω
−1
j + εij for every (i, j) ∈ E

Output: Vector of phases {ωi}i∈V
Let A1 denote the weighted adjacency matrix of G, defined entrywise in (45)
Let D denote the diagonal matrix of vertex degrees {di}i∈V
Compute the matrix L1 ← I −D−1/2A1D

−1/2

Compute the eigenvector u corresponding to the smallest eigenvalue of L1

Ouput ωi = ui/|ui| for every i ∈ V

The matrix L1 := I−D−1/2A1D
−1/2 in Algorithm 3 is known as the connection

Laplacian of G, and bears resemblance to the Laplacian L. Note that Algorithm 3

suggests that the solution ω̂ to (46) is (approximately) the vector whose entries are

normalized versions of the entries of the eigenvector corresponding to the smallest

eigenvalue. To see this, we will need the help of the following elementary result from

graph theory:

Lemma 5.3 (Degree-Sum Formula). Let G = (V,E) be a simple graph and denote

by di the degree of vertex i ∈ V . Then
∑

i∈V di = 2|E|.

Proof. Consider the subset of S ⊆ V ×E consisting of all pairs of vertices and their

incident edges, namely S := {(i, (j, k)) : i, j, k ∈ V, j = i or k = i}. Since the degree

of a vertex counts its incident edges, every i ∈ V contributes di elements to S. On

the other hand, every edge (i, j) ∈ E determines exactly two elements of S, namely

(i, (i, j)) and (j, (i, j)). Hence, we have
∑

i∈V di = |S| = 2|E|, as desired.

We now provide some intuition behind the use of eigenvectors in Algorithm 3.

Expanding the sum in (46), we see that

∑
(i,j)∈E

|ωi − A1[i, j]ωj|2 =
∑

(i,j)∈E

(
|ωi|2 − 2 Re(ω−1

i A1[i, j]ωj) + |A1[i, j]ωj|2
)

= 2
∑

(i,j)∈E

(
1− Re(ω−1

i A1[i, j]ωj)
)
.
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By Lemma 5.3, the first part of this expression becomes

2|E| =
∑
i∈V

di =
∑
i∈V

ω−1
i diωi = ω∗Dω. (47)

Meanwhile, the second term yields

Re
(

2
∑

(i,j)∈E

ω−1
i A1[i, j]ωj

)
=
∑
i∈V

∑
j∈V

ω−1
i A1[i, j]ωj = ω∗A1ω,

and so (46) may be written ω̂ = arg minω∈T|V | ω
∗(D − A1)ω. Noting from (47) that

ω∗Dω does not vary with ω, this is equivalent to solving

arg min
ω∈T|V |

ω∗(D − A1)ω

ω∗Dω
,

which, since D−A1 is self-adjoint, is a Rayleigh quotient in terms of the connection

Laplacian of G:

ω∗(D − A1)ω

ω∗Dω
=

(D1/2ω)∗(I −D−1/2A1D
−1/2)(D1/2ω)

‖D1/2ω‖2
=

(D1/2ω)∗L1(D1/2ω)

‖D1/2ω‖2
.

The minimum value of this Rayleigh quotient over all ω ∈ C|V | is the smallest

eigenvalue of L1, attained when u := D1/2ω is the corresponding eigenvector. Since

the ith coordinate of D1/2ω is
√
diωi, it follows that ωi = ui/

√
di, is the optimal

choice for the relaxed form of (46). This does not necessarily have unit-modulus

entries, however, and so we normalize: ω̂i := ui/|ui|.

To be clear, since Algorithm 3 produces an estimate ω̂ for the vector of unknown

phases using only relative phases, any estimate eiθω̂, θ ∈ R, is also a viable estimate;

this is reflected in the fact that the eigenvector u is unique up to a complex scalar.

Thus, angular synchronization yields the desired phase vector up to a global phase

ambiguity. Bandeira et al. [3] prove a stability guarantee for Algorithm 3 in terms

of the spectral gap λ2 of the graph G. As such, we don’t lose much in the relaxation
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provided the underlying graph is sufficiently connected. We state their result here

(without proof) for completeness:

Theorem 5.4 (Theorem 6.3 in [3]). Consider a graph G = (V,E) with spectral

gap λ2 > 0 and define ‖θ‖T := mink∈Z |θ − 2πk| for all θ ∈ R/2πZ. Furthermore,

let A1 denote the weighted adjacency matrix of G, defined entrywise in (45). Then

Algorithm 3 outputs the estimate ω̂ ∈ C|V | with unit-modulus entries such that, for

some θ ∈ R/2πZ,

∑
i∈V

‖ arg(ω̂i)− arg(ωi)− θ‖2
T ≤

C‖ε‖2

P 2λ2
2

where P := min(i,j)∈E |ωiω−1
j + εij| and C is a universal constant.

5.3 Formulating the phase error problem with graphs

Recall the concluding discussion of Section 5.1, in which we combined several

received radar signals with their estimates to produce a product of their phase er-

rors (44). In particular, this product of phase errors is a quotient of relative phases.

With angular synchronization in hand, we will see that this nesting of relative phases

suggests a way to use angular synchronization to recover the phase errors.

First, we show how to organize the available phase information using graphs.

To this end, consider the graph G = (V,E) for some finite set V . Let {ωi}i∈V be a

vector of unknown phase errors and {ωiω−1
j }(i,j)∈E a set of unknown relative phases.

Now define a second graph G′ = (V ′, E ′) such that V ′ = E, and consider the set of

known relative phases {σi,jσ−1
j,k}((i,j),(j,k))∈E′ , where σi,j := ωiω

−1
j for every (i, j) ∈ E.

Note from Fact 5.2 that we have ωiω
−2
j ωk = σi,jσ

−1
j,k for every ((i, j), (j, k)) ∈ E ′, and

so G and G′ together encode a nested set of relative phases. Hence, one may seek

to first apply Algorithm 3 on G′ to determine the edge measurements for G (up to

a global phase), at which point applying the algorithm a second time on G would

determine the phase errors {ωi}i∈V (up to yet another global phase). Note that this
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Figure 5: Two aircraft imaging a scene of interest (left) using bistatic SAR techniques at three different times. As in
Example 5.5, at the first time instant the aircraft are located at positions a and c, while the second and third
time instances correspond to location pairs (b, d) and (c, e), respectively. To form the corresponding graphs
G = (V,E) and G′ = (V ′, E′) (right), note that Fact 5.2 states that, for each location pair, we receive
relative phase information relating the positions to their bisector. Hence, each location pair contributes
an edge to G′; for instance, the pair (a, c) dictates that (a, b) ↔ (b, c). Furthermore, each of the vertices
in G′ corresponds to an edge in G. Here, two vertices are adjacent if one is the bisector of a location pair
that the other belongs to. In this way, edges in G represent relative phases of the form ωiω

−1
j , while edges

in G′ encode the recorded quotients of relative phases σijσ
−1
j,k . Angular synchronization provides a means

of retrieving {ωiω−1
j }(i,j)∈V ′ up to a global phase from {σijσ−1

j,k}((ij),(jk))∈E′ . Encoding the resulting
vertex measurements on the edges in G then allows {ωi}i∈V to be obtained (up to a global phase and
partial modulation) by a second application of angular synchronization.

process relies heavily on the connectivity of G′, which is inherited from properties of

G. As we will see, connectivity in G′ is not easily obtained. Regardless, the idea of

using angular synchronization on both graphs motivates the approach of this section.

Example 5.5. Suppose two aircraft image the scene in Figure 5 along the synthetic

aperture from point a to point e. In particular, the two aircraft image the scene

with location pairs (a, c), (b, d), and (c, e) (meaning the first aircraft is at position

a when the second is at c, and so on). Based on Fact 5.2, we record a product of

phase errors of the form σi,jσ
−1
j,k at each location. To organize this information, we

take the graphs G = (V,E) and G′ = (V ′, E ′), depicted in Figure 5, such that

V = {a, b, c, d, e}, E =
{

(a, b), (b, c), (c, d), (d, e)
}
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and

V ′ = E =
{

(a, b), (b, c), (c, d), (d, e)
}
,

E ′ =
{(

(a, b), (b, c)
)
,
(
(b, c), (c, d)

)
,
(
(c, d), (d, e)

)}
.

In this way, each vertex in V represents an unknown phase error, each edge in E

(equivalently, vertex in V ′) represents an unknown relative phase between phase

errors, and each edge in E ′ a known quotient of such relative phases obtained using

Fact 5.2. Thus, performing angular synchronization on G′ and then on G will return

an estimate of the phase errors with two degrees of ambiguity.

Note that the graphs G and G′ of Example 5.5 are both nearly cyclic; indeed,

both cycles would be completed if the location pair (d, a) were added to the system.

For this reason, suppose we allow two aircraft imaging a scene to follow a circular path

enclosing the target, maintaining their relative positions throughout. Depending on

the distance between the aircraft, the graphs generated by the bistatic phase errors

are then cycles, where the number of vertices is equal to the number of location pairs

at which the scene is imaged. Allowing for multiple pairs of aircraft to perform such

a maneuver along this circular path then creates multiple cycles in G, each creating

a separate cycle in G′. Hence, more planes effectively increases the connectivity

of G, which means the second application of Algorithm 3 will be more stable by

Theorem 5.4. It is for this reason that we focus on a particular class of graphs,

namely, circulant graphs:

Definition 5.6. A simple graph G = (V,E) is said to be circulant if its adjacency

matrix A is a circulant matrix. That is, there exists a mapping α : Z|V | → {0, 1}

such that A[i, j] = α(j − i) for all i, j ∈ {0, . . . , |V | − 1}.

Circulant graphs enjoy a lot of useful mathematical properties. For example,

circulant graphs whose vertex sets are of prime order have a convenient structure in

terms of the cycles they contain.
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Lemma 5.7. Let G be a simple, circulant graph with n vertices. If n is an odd

prime, then G decomposes into copies of the n-cycle.

Proof. Let A denote the adjacency matrix of G. Then, because G is circulant,

there exists a mapping α : Zn → {0, 1} such that A[i, j] = α(j − i) for all i, j ∈

{0, . . . , n − 1}. Since the adjacency matrix of a simple graph is symmetric, we also

have α(x) = α(−x) for all x ∈ Zn. Moreover, the fact that the diagonal entries of A

must vanish implies α(0) = 0. Let δi : Zn → {0, 1} such that

δi(x) :=

1 if x = i

0 otherwise

for all i ∈ {0, . . . , n− 1}. Then α decomposes as

α(x) =
∑
i∈Zn

α(i)δi(x) =

bn
2
c∑

i=1

α(i)(δi + δ−i)(x), (48)

where the last equality follows from the assumption that n is odd. Now consider the

set S := {1 ≤ s ≤ bn
2
c : α(s) = 1} and note that, by the properties of α listed above,

(48) may be written as

α(x) =
∑
s∈S

α(s)(δs + δ−s)(x) =
∑
s∈S

(δs + δ−s)(x).

Thus, defining the matrices {As}s∈S entrywise by As[i, j] := (δs + δ−s)(j− i), we can

decompose A as follows:

A[i, j] = α(j − i) =
∑
s∈S

(δs + δ−s)(j − i) =
∑
s∈S

As[i, j].

We claim that each As is the adjacency matrix of an n-cycle, from which it follows

that G decomposes into |S| copies of Cn. To prove this claim, note that for any s ∈ S,
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As[i, j] = 1 whenever j − i = ±s. Hence, consider the vertex labeling φ : Zn → Zn
defined by φ(i) := s−1i for all i ∈ Zn, where s−1 is the multiplicative inverse of s

in Zn (note that this is a well-defined bijection since s is nonzero and n is prime,

implying Zn is a field and s is invertible). Furthermore, since φ is linear, j − i = ±s

if and only if

φ(j)− φ(i) = φ(j − i) = φ(±s) = ±φ(s) = ±1,

meaning that As[i, j] = 1 if and only if φ(j)−φ(i) = ±1. Thus, each As is isomorphic

(by the corresponding φ) to the standard n-cycle, as desired.

Now that we have a better understanding of circulant graphs, we apply this

understanding to solve the phase error problem in the noiseless case. To this end,

let G = (V,E) be circulant with n vertices, where n is an odd prime. Also, consider

the graph G′ = (V ′, E ′) where V ′ = E and (i, j), (k, `) ∈ V ′ are adjacent if and only

if they share a neighbor in a common n-cycle in the decomposition of G given by

Lemma 5.7. Thus, edges in E ′ are of the form ((i, j), (j, k)) for i, j, k ∈ Cn ⊆ G. For

instance, one way in which this can be implemented for multistatic SAR is to allow

c + 1 aircraft to circle a target scene, each performing monostatic SAR; if the first

aircraft in the formation transmits a bistatic signal for each of the other aircraft to

receive, then the resulting graph G will be circulant with c cycles.

To better develop our understanding of the phase error problem with circulant

graphs, we first focus on the case where G is a cycle. To this end, suppose θ : V →

R/Z is any function on the vertices of an n-cycle in G and consider the function

θ′ : V ′ → R/Z defined by θ′((i, j)) := θ(j) − θ(i) for every (i, j) ∈ V ′. To be clear,

θ′ encodes differences (modulo 1) in the value of θ at adjacent vertices in G, and

so resembles a finite difference. Similarly, consider the function θ′′ : E ′ → R/Z

defined by θ′′(((i, j), (k, `))) := θ′((k, `)) − θ′((i, j)), which encodes the same types

of differences in the value of θ′ at adjacent vertices in G′. Since we may identify V
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with Zn in such a way that i, j ∈ V are adjacent whenever j − i = ±1 mod n, it is

possible to redefine θ, θ′, and θ′′ as functions on Zn. In particular, we see that θ′ and

θ′′ act on any x ∈ Zn such that θ′(x) = θ(x+ 1)− θ(x) and θ′′(x) = θ′(x+ 1)− θ′(x).

Note that the function θ may be made to represent a complex phase by con-

sidering the unit-modulus number e2πiθ(x) for any x ∈ Zn. With this in mind, θ′

and θ′′ analogously represent the type of nested relative phases we are interested

in. (Indeed, we switch to θ-notation here so that we can appeal to intuitions of

finite-differences and integration. Note that θ lies in [0, 1) instead of [0, 2π) due to

the choice of normalization.) Thus, it is reasonable to ask whether it is possible to

determine θ (up to some sort of global ambiguity having two degrees of freedom)

given only the values of θ′′. This leads to the following lemma:

Lemma 5.8. For any function θ : Zn → R/Z, let θ′ : Zn → R/Z and θ′′ : Zn → R/Z

be defined by θ′(x) := θ(x + 1) − θ(x) and θ′′(x) := θ′(x + 1) − θ′(x). Then the

values {θ′′(x)}x∈Zn determine an estimate θ̂ such that θ̂(x) = z+ kx
n

+ θ(x) for some

z ∈ R/Z and k ∈ {0, . . . , n− 1}.

Considering the above discussion, the implication of this result is that knowing

the relative phase measurements represented by the edges inG′ determines the phases

encoded at the vertices of any cycle in G up to a modulation and a global phase

factor, not unlike the result of two iterations of angular synchronization alluded

to in Example 5.5. Indeed, the processes θ′′ 7→ θ̂′ and θ̂′ 7→ θ̂ are just angular

synchronization in the noiseless case. To clarify, the estimate produced by Lemma 5.8

yields

e2πiθ̂(x) = e2πize2πikx/ne2πiθ(x)

for some z ∈ R/Z; hence, the values of e2πif̂(x) are a modulation of the actual values

of e2πif(x), multiplied by a global phase. The global phase is precisely the ambiguity

associated with the second application of angular synchronization (on the graph G),
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while the modulation is a consequence of propagating the ambiguity from the first

application of angular synchronization (on the graph G′) through the second. In

the noiseless case, this process is particularly clean; in fact, a single n-cycle in G is

sufficient:

Corollary 5.9. Let G = (V,E) be an n-cycle and G′ = (V ′, E ′) where V ′ = E and

(i, j), (k, `) ∈ V ′ are adjacent if and only if they share a vertex as edges in G. Fur-

thermore, let {ωi}i∈V be a vector of unknown phase errors, {ωiω−1
j }(i,j)∈E a set of un-

known relative phases, and {σi,jσ−1
j,k}((i,j),(j,k))∈E′ a set of known relative phases, where

σi,j := ωiω
−1
j for every (i, j) ∈ E. Then the measurements {σi,jσ−1

j,k}((i,j),(j,k))∈E′ de-

termine ω up to a modulation and a global phase factor.

Proof. Let g : V → R/Z such that ωi = e2πig(i) for every i ∈ V and define the

functions g′ : V ′ → R/Z, g′′ : E ′ → R/Z by

g′((i, j)) := g(j)− g(i) and g′′
(
((i, j), (k, `))

)
:= g′((k, `))− g′((i, j)).

Note that these definitions imply

ωiω
−1
j = e2πig′((j,i)) for all (i, j) ∈ E,

σi,jσ
−1
j,k = e2πig′′(((k,j),(j,i))) for all ((i, j), (j, k)) ∈ E ′,

where we have implicitly assigned a direction to each edge in G and G′. In particu-

lar, the set of measurements {σi,jσ−1
j,k}((i,j),(j,k))∈E′ completely determines the values

{g′′(((i, j), (j, k)))}((i,j),(j,k))∈E′ .

Since G is an n-cycle, there exists a vertex labeling φ : V → Zn such that

i, j ∈ V are adjacent if and only if φ(j)− φ(i) = ±1 mod n. Consider the functions
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θ : Zn → R/Z, θ′ : Zn → R/Z, and θ′′ : Zn → R/Z defined earlier, so that

θ(x) :=g(φ−1(x)),

θ′(x) :=g′(φ−1(x+ 1))− g′(φ−1(x)),

θ′′(x) :=g′′(φ−1(x+ 1))− g′′(φ−1(x)).

Since the values {θ′′(x)}x∈Zn are also completely determined by the set of mea-

surements {σi,jσ−1
j,k}((i,j),(j,k))∈E′ , applying Lemma 5.8 yields the estimate θ̂(x) =

z + kx
n

+ θ(x) for some z ∈ R/Z and k ∈ {0, . . . , n− 1}. Thus, we have

ω̂i :=e2πiĝ(i) = e2πiθ̂(φ(i)) = e2πi(z+ kφ(i)
n

+θ(φ(i)))

=e2πize2πikφ(i)/ne2πig(i) = e2πize2πikφ(i)/nωi

completing the proof.

This result is not entirely surprising from the perspective of angular synchro-

nization, since we have already seen how the recovery of unknown phases from

noiseless relative phase measurements is possible provided the resultant graph is

connected. Still, Corollary 5.9 illustrates the power of Lemma 5.8 as a means of

analyzing the types of circulant graphs we are interested in.

Proof of Lemma 5.8. Since θ′(x+1) = θ′′(x)+θ′(x) for any x ∈ {0, . . . , n−1}, fixing

the estimate θ̂′(0) iteratively determines the set {θ̂′(x)}n−1
x=0. To show that this set

is consistent, we also require θ̂′(0) = θ′′(n − 1) + θ̂′(n − 1). For this, note that an

inductive argument yields

θ̂′(n− 1) = θ′′(n− 2) + θ̂′(n− 2) =
n−2∑
k=0

θ′′(k) + θ̂′(0),
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and so it suffices to show that

θ′′(n− 1) = −
n−2∑
k=0

θ′′(k) = −
n−2∑
k=0

(θ̂′(k + 1)− θ̂′(k))

= θ̂′(0)− θ̂′(n− 1) = θ′(0)− θ′(n− 1),

which follows from the definition of θ′′. Hence, there exists m ∈ R/Z such that

θ̂′(x) = m+ θ′(x) for all x ∈ Zn.

Similarly, since θ(x + 1) = θ′(x) + θ(x) for any x ∈ {0, . . . , n − 1}, fixing

the estimate θ̂(0) iteratively determines the set {θ̂(x)}n−1
x=0 in terms of the estimates

{θ̂′(x)}n−1
x=0; in particular, a telescoping sum in the definition of θ̂(x) gives

θ̂(x) = mx+ θ(x)− (θ(0)− θ̂(0)).

Hence, there exists z ∈ R/Z such that θ̂(x) = z+mx+θ(x) provided the consistency

relation θ̂(0) = θ′(n− 1) + θ̂(n− 1) is satisfied. To this end, an inductive argument

first yields

θ̂(n− 1) = θ̂′(n− 2) + θ̂(n− 2) =
n−2∑
k=0

θ̂′(k) + θ̂(0),

and so it suffices to show that

θ̂′(n− 1) = −
n−1∑
k=0

θ̂′(k) = −
n−1∑
k=0

(m+ θ′(k))

= −m(n− 1)−
n−1∑
k=0

(θ(k + 1)− θ(k)) = −m(n− 1) + θ(0)− θ(n− 1).

By the definition of θ̂′, this only holds if mn ≡ 0 mod 1; that is, there must exist

some integer k such that m = k/n. Therefore, we conclude that θ̂(x) = z+ kx
n

+θ(x)

for all x ∈ Zn, where z ∈ R/Z and k ∈ {0, . . . , n− 1}.
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Notice that the recovery process outlined in the proof of Corollary 5.9 fails when

the measurements {σi,jσ−1
j,k}((i,j),(j,k))∈E′ are corrupted by noise, and so we must seek a

more stable solution. For this reason, we return to the more general case where G is a

circulant graph with n vertices such that n is an odd prime, and we will represent the

phase information in a way that is more compatible with angular synchronization.

Since θ is any function taking vertices in V to real numbers modulo 1, let ω :=

{ωi}i∈V ⊆ T be a complex vector of phase errors such that ωi := e2πiθ(i) for every

i ∈ V . Note that this construction is well-defined, and so we will treat the vector ω

as a function from V to T. Using the proof of Corollary 5.9 as motivation, consider

the decomposition of G into n-cycles given by Lemma 5.7, so that we may orient

each cycle to give every edge a direction. Now, redefine the function θ′ : V ′ → R/Z in

terms of these directions; in particular, take θ′((i, j)) := θ(j)− θ(i) whenever i→ j

in G. Then

(ωω∗)[i, j] = e2πi(θ(i)−θ(j)) = e2πiθ′((j,i)).

To similarly redefine θ′′, let B ⊆ E ′ denote the set of all ordered pairs of consecutive

edges in a common n-cycle ofG from the decomposition above and take θ′′ : B → R/Z

such that

θ′′
(
((i, j), (j, k))

)
:= θ′((j, k))− θ′((i, j)) = θ(k)− 2θ(j) + θ(i).

Hence, we have

(ωω∗)[i, j]
(
(ωω∗)[j, k]

)−1
= e2πi(θ(i)−2θ(j)+θ(k)) = e2πiθ′′(((k,j),(j,i))),

and so such products between entries of ωω∗ for edges in B may be used to estimate

the entries of ω by applying Lemma 5.8.
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To see this, note that Lemma 5.8 provides a means of producing an estimator

for θ based on the given values of θ′′ on a cycle. Specifically, for each cycle C one may

obtain the estimate θ̂(i) = z(C)+ k(C)i
n

+θ(i) for some cycle-specific z(C) ∈ R/Z and

k(C) ∈ {0, . . . , n−1}. In particular, for each cycle C in the decomposition of G, the

values of θ′′ determine the estimator θ̂′((i, j)) = m(C) + θ′((i, j)) for all (i, j) ∈ C,

where m(C) ∈ R/Z. With this in mind, consider the matrices XC and X−C , defined

entrywise by

XC [i, j] : =

e
−2πiθ̂′((i,j)) if i→ j in C

0 otherwise,

X−C [i, j] : =

e
2πiθ̂′((j,i)) if j → i in C

0 otherwise

(49)

for each n-cycle C in the decomposition of G. Then the collection of matrices

{XC , X−C}C⊆G provides a means of estimating the off-diagonal entries of the outer

product ωω∗.

Let A denote the adjacency matrix of G and consider the subspace T of the

vector space of self-adjoint n× n matrices Hn×n defined by

T := {X ∈ Hn×n : X[i, j] = 0 whenever A[i, j] = 1}.

Notice that the nonzero entries of any matrix X ∈ T do not coincide with those

of any matrix in the collection {XC , X−C}C⊆G. Thus, defining the Minkowski sum

S := span{XC , X−C}C⊆G + T , it follows that ωω∗ ∈ S (for the noiseless case).

Finally, since the diagonal entries of ωω∗ are all equal to 1, defining

δi(x) :=

1 if x = i

0 otherwise.
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for each i ∈ {0, . . . , n − 1} yields 〈ωω∗, δiδ∗i 〉HS = 1 for every i = 0, . . . , n − 1.

Combining this with the above result, we see that one may obtain an estimate for

the outer product ωω∗ by seeking a rank-1 matrix as close to the subspace S as

possible whose diagonal entries are nearly 1. This leads to the following feasibility

problem for some fixed tolerance ε > 0; here, PVX denotes the projection of X onto

the subspace V :

Find X ∈ Hn×n such that rank(X) = 1

and ‖PS⊥X‖2
HS +

n−1∑
i=0

∣∣1− 〈X, δiδ∗i 〉HS

∣∣2 ≤ ε. (50)

Due to the tolerance ε > 0, we expect that the above program would be particularly

stable to noise on the order of ε. Unfortunately, this program is not convex and

so is not easily solved. To make it convex, one could relax the rank-1 condition

to a positive-semidefinite requirement, but this makes the feasibility set too large;

indeed, the identity matrix is necessarily feasible for the relaxed problem but has full

rank. Properly relaxing the problem remains an open problem. Note that the outer

product of any modulation of ω is feasible in (50). As such, any convex combination

of these will be feasible in a convex relaxation. In Appendix B, we show how to

determine ω up to a modulation and a global phase factor from any such convex

combination.

5.4 Solving the phase error problem in the noisy case

The process of determining phase errors from nested relative phases via the

feasibility problem (50) of the previous section appears to be quite difficult. For this

reason, we seek the phase errors by another method. In particular, we will obtain

them by applying angular synchronization iteratively.

Let ω = {ωi}i∈V ⊆ T be a vector of unknown phase errors and consider the

graphs G = (V,E) and G′ = (V ′, E ′) from the previous section, where G is circu-
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lant with n vertices such that n is an odd prime. Thus, we encode the unknown

relative phases as edge measurements in G, namely {ωiω−1
j }((i,j))∈E, and similarly

for the known (noisy) relative phases in G′, {σi,jσ−1
j,k + ε(i,j),(j,k)}((i,j),(j,k))∈E′ , where

σi,j := ωiω
−1
j for all i, j ∈ {0, . . . , n − 1} and each ε(i,j),(j,k) is an adversarial noise

term (under the assumption that ε(i,j),(j,k) = ε(k,j),(j,i)). Since Algorithm 3 (angular

synchronization) requires the input graph be directed, suppose we arbitrarily direct

the edges of G and G′ such that edges in a common n-cycle have the same orienta-

tion. To be consistent, this means we take only the relative phases ωiω
−1
j if (i, j) ∈ E

or ωjω
−1
i = ωiω

−1
j if (j, i) ∈ E (likewise for σi,jσ

−1
j,k + ε(i,j),(j,k) as edges in E ′).

Unfortunately, the structure G′ inherits from G is not conducive to angular

synchronization. In fact, each n-cycle in the decomposition of G corresponds to a

distinct n-cycle in G′, each of which forming its own component. Thus, G′ itself

is not connected and, therefore, has a spectral gap of 0. For this reason, it doesn’t

even make sense to perform angular synchronization on G′. We can, however, use the

cycles in G′, along with the corresponding edge measurements, as separate inputs

for Algorithm 3. Since the vertices in G′ correspond to edges in G, the outputs

then estimate certain entries of the phase error outer product ωω∗, specifically those

represented by the edges of each cycle in G. By Lemma 5.8, it follows that the

information encoded on the edges of distinct cycles in G are obtained up to their own

global phase factors. Assuming one could “synchronize” these phases in such a way

that each cycle has the same global phase, it would then be possible to use G and the

relative phases {ωiω−1
j }((i,j))∈E as inputs in Algorithm 3 to obtain an estimate for the

phase error vector ω. Admittedly, this is the most ad hoc portion of the phase error

recovery process; indeed, the feasibility problem (50) was considered as a possible

way to circumvent this issue. The problem with this intermediate step is that the

global phase factors associated with each cycle in G interact differently depending on

the cycle orientations. To see this, note that each n-cycle in G necessarily contains

every vertex of G, and so traversing a given cycle along adjacent edges generates a
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unique walk in G which reaches every vertex exactly once before repeating. Because

each cycle is distinct, however, the number of steps necessary to reach a certain

vertex from the same starting vertex in any two walks is different. Recalling that

phase propagates along edges, this means that the accumulated phase due to the

global phase factors varies from cycle to cycle. Overall, it would be much better

to estimate the relative phases {ωiω−1
j }(i,j)∈E from {σi,jσ−1

j,k}((i,j),(l,k))∈E′ in one step

instead of synchronizing components of G individually before synchronizing their

outputs. In the absence of a better alternative, we continue.

To synchronize the cycles, we take advantage of the circulant property of the

adjacency matrices of each cycle in G; in particular, note that it is possible to obtain

common support amongst these matrices simply by raising each to a particular non-

negative power. These exponents represent the different number of steps necessary

to move in each cycle in order to reach the same vertex given a common starting

vertex. Since cycles must exhibit consistency in relative phase (i.e., the product of

relative phase between any two vertices is constant regardless of the cycle chosen),

raising each matrix to the appropriate power without the global phase factors should

yield a set of identical circulant matrices. However, the fact that the exponents differ

means that the global phase factors are not related linearly. For instance, to move

between adjacent vertices in one cycle may require two steps in another cycle, and

so their corresponding phase factors have a quadratic relationship; others may yet

have even higher order. To determine each cycle up to a common global phase, it is

therefore necessary to incorporate all of these phase relationships.

Let S ⊆ N denote a set of indices such that each distinct n-cycle in G is labeled

Ci for some i ∈ S. Furthermore, assume that two n-cycles Ci and Cj in G are distinct

if and only if i, j ∈ S and i 6= j. Consider the function s : S×S → Zn which outputs

the exponent such that XCi and X
s(i,j)
Cj

have common support; here, XCi denotes

the weighted adjacency matrix of the cycle Ci defined in (49). Then by the above
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discussion there exists a function α : S × S → T such that

α(i, j)XCi = X
s(i,j)
Cj

for all i, j ∈ S. Since these weighted adjacency matrices are related to the actual

adjacency matrices of the cycles by distinct global phase factors, denoting the phase

factor associated with the cycle Ci by βi then yields the relation

α(i, j)

βi
=
( 1

βj

)s(i,j)
for all i, j ∈ S. Rearranging, we see that the phases {βi}i∈S may be expressed as

βi = α(i, j)β
s(i,j)
j for all i, j ∈ S. Thus, we require an initial guess for one of the

phases in order to generate the entire set. Such a guess is not an issue, since it

merely assigns an arbitrary phase to one of the cycles in G, in terms of which the

remaining phase factors are determined. To be clear, we already know there must

be an ambiguity in the result regarding a single global phase factor, making this

step legitimate. Rather than simply choosing a random phase to generate the set

of phases, it makes sense to choose a particular βi such that it scales XCi to have

phase 1; i.e., we choose β−ni to be equal to the product of the nonzero entries of

XCi for some fixed i ∈ S. Using this fixed phase to generate the remaining phases

then yields the set {βi}i∈S up to a single global phase; we outline this process in its

entirety in Algorithm 4. As we saw in Lemma 5.8 and Corollary 5.9, the consequence

of this global phase is to ultimately cause the estimated phase error vector to be a

modulation of the true phase error vector.

Now that we have recovered the phase error vector up to a global phase and

modulation, a SAR image may be reconstructed using a simple algorithm, which

we now discuss. Recall that the phase error vector provides the phase factors asso-

ciated with slices of the Fourier transform of the target image obtained according

to Fact 5.2. To recover the modulation, we leverage the effect that modulating the
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Algorithm 4 Cycle synchronization

Input: Weighted n× n adjacency matrices {XCi}i∈S defined in (49)
Output: Vector {βi}i∈S of cycle-dependent phase factors

Initialize |S| × |S| matrices s and α of all zeros
for k, j = 1 to |S| do

Compute p ∈ Zn and c ∈ T such that cXCk = Xp
Cj

Assign s[k, j]← p and α[k, j]← c
end for
Fix ` ∈ S
Compute β` ←

(∏
k→j XC` [k, j]

)−1/n
{Initialize β` in terms of the product

of all nonzero entries of XC`
}

for k = 1 to |S|, k 6= ` do

Compute βk ← α[k, `]β
s[k,`]
`

end for
Output: {βi}i∈S

slices in the Fourier domain has on the total variation of the image in the spatial

domain. The total variation of an image is the sum of the absolute values of the

differences between adjacent pixels in the image. Since a modulation of the slices in

the Fourier domain is a pointwise multiplication of the Fourier transform, it has the

effect of a convolution in the spatial domain with some function, essentially blurring

the image. Thus, sharp contrasts in the image are reduced; in other words, those

adjacent pixels which contribute more to the total variation are changed in such a

way that their contribution is reduced, and so a modulation in the Fourier domain

reduces the total variation in the spatial domain. Consequently, the best estimate

for the true modulation is that which maximizes the total variation of the image. In

order to be independent of the unknown global phase factor, we actually take the

modulation which maximizes the total variation of the absolute value of the image.

As for the global phase factor, suppose the true image data in the spatial

domain is all real and nonnegative. Then taking the two dimensional inverse Fourier

transform of the data with the estimated modulation determined above will yield

values in the spatial domain that are (approximately) scaled versions of the global

phase. Thus, adding all pixel values and normalizing gives an estimate for the global
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Algorithm 5 Total variation maximization

Input: Slices of Fourier transform data, associated phase errors ω := {ωi}n−1
i=0 up to

a modulation and global phase factor
Output: Estimated SAR image Ŷ

Let X denote the matrix of Fourier transform data
Let M denote the matrix of slice indices {0, . . . , n− 1}
for k = 0 to n− 1 do

Compute ω̃ ← Ekω
Compute X̂ ← X ◦ ω̃(M) {◦ is the Hadamard matrix product}
Compute the inverse Fourier transform Y ← F−1X̂
Compute the total variation TVk ← ‖Y ‖TV

end for
Compute m← arg maxk TVk
Compute ω̃ ← Emω
Compute X̂ ← X ◦ ω̃(M)
Compute the inverse Fourier transform Y ← F−1X̂
Compute ψ ←

∑
i

∑
j Y [i, j]/|

∑
i

∑
j Y [i, j]|

Output: Ŷ ← Re(ψ−1Y )

phase which, combined with the estimated modulation in the Fourier domain, will

yield the best estimate for the image itself (after an inverse Fourier transform). Due

to the effect of noise, we take the real part of the resulting image data to approximate

the actual image, since the imaginary parts of the pixel data are expected to be

relatively small. This procedure is outlined in Algorithm 5.

Overall, the solution to the phase error problem we have developed here in-

volves a particular measurement design and phase error reconstruction procedure:

Measurement design

• Let G = (V,E) and G′ = (V ′, E ′) be graphs such that G is circulant with |V |

an odd prime, V ′ = E, and ((i, j), (k, `)) ∈ V ′ are adjacent in G′ if and only

if they share a neighbor in a common n-cycle in the decomposition of G given

by Lemma 5.7
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• Design a multistatic SAR system such that applying Fact 5.2 yields the un-

known phase errors {ωi}i∈V , the unknown relative phases {ωiω−1
j }(i,j)∈V ′ , and

the known combinations {ωiω−2
j ωk}((i,j),(j,k))∈E′

SAR image reconstruction procedure

• For each cycle inG′, use Algorithm 3 to calculate the relative phases {ωiω−1
j }(i,j)∈C⊆G′

up to distinct global phase factors from {ωiω−2
j ωk}((i,j),(j,k))∈E′

• Form the weighted adjacency matrices for each n-cycle in G using the relative

phases {ωiω−1
j }(i,j)∈G′ from the corresponding cycles in G′ according to (49)

• Use Algorithm 4 to synchronize the cycle-dependent phase factors

• Use Algorithm 3 to calculate the phase errors {ωi}i∈V up to a modulation and

a global phase factor from the synchronized relative phases {ωiω−1
j }(i,j)∈V ′

• Use Algorithm 5 to estimate the SAR image by picking the modulation that

maximizes total variation

To test the phase error recovery procedure (i.e., the first four bullets of the

SAR image reconstruction procedure above), we simulated the recovery of random

phase errors ωi from noisy products of the form ωiω
−2
j ωk using random circulant

graphs on 101 vertices. For graphs G containing a fixed number of cycles, we gener-

ated a random phase error vector and took such a product of phases for each edge in

the corresponding graph G′. We then added complex Gaussian noise to each prod-

uct (normalizing the resultant entries) to simulate noisy SAR data acquired from

multistatic schemes according to Fact 5.2. Finally, using Algorithms 3 and 4 as

prescribed above, we generated the estimated phase error vector (up to a modula-

tion and global phase factor). Figure 6 depicts how the performance of this phase

error reconstruction changed with the number of cycles in the graph G. Since the

global phase ambiguity is not resolved in this portion of the image reconstruction

process, the relative error here is measured between the outer products of the phase

error vector and the phase error estimate, which we then minimized over all possible
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Figure 6: Iterative angular synchronization as a means of recovering a phase error vector (up to a modulation and
global phase) from nested relative phase information. Here, simulations use a graph with 101 vertices and
varying numbers of cycles. Note that the global phase ambiguity in the estimate cannot be resolved, and
so the relative errors are taken between the outer products of the true and estimated phase error vectors.
Since the estimate produced is also a modulation of the true phase error vector, the errors depicted are
the minima over all possible modulations. At left we plot relative error in the output as a function of the
number of cycles in G, while at right we plot computation time for the same varying set of cycles. For the
first row of plots (top), the normalized noise is fixed in average magnitude at σ2 = 0.01, while the second
row (bottom) depicts noise fixed at σ2 = 0.1. Piecewise linear graphs connecting the sample averages are
shown for clarity.

modulations. Note that multiple cycles tend to reduce the error in reconstruction,

though with diminishing returns. Since the computation time grows with each cycle

added to G, this suggests the existence of an “optimal” number of cycles that gives

good reconstruction while keeping computation time low.

To get an idea of the behavior of the phase error recovery procedure in the

presence of noise, we also simulated the recovery of random phase errors from noisy

multistatic SAR data in different noise regimes using a fixed number of cycles. In

particular, we generated random circulant graphs containing 1, 5, and 10 cycles,

examining the performance of phase error recovery in each case under varying levels

of noise. Figure 7 displays the observed relative error in output as a function of
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Figure 7: The stability of iterative angular synchronization is cycle-dependent—more cycles imply better stability
(and each cycle comes from a pair of aircraft in the multistatic system). Here, iterative angular synchro-
nization recovers the phase error vector (up to a modulation and global phase) from simulated nested
relative phase information using a graph with 101 vertices and varying numbers of cycles. Since the es-
timate produced is necessarily a modulation of the true phase error vector, the errors depicted are taken
to be the minima over all possible modulations. Each plot depicted shows relative error in recovery as a
function of average input noise magnitude (normalized). From left to right, the graphs used contain 1 and
5 cycles; the case of 10 cycles behaves almost identically to the 5 cycle case. Note when the graph contains
one cycle the algorithm is relatively ineffective at determg the phase error vector (up to any modulation)
regardless of the level of noise in the model; as such stability is poor for this case. Meanwhile, graphs with
greater numbers of cycles exhibit better stability to noise.

input noise; as illustrated, the phase error reconstruction procedure appears to be

stable to noise provided the graph G contains multiple cycles.

Finally, we tested the last bullet of the SAR image reconstruction procedure.

To do this, we used a cropped version of a SAR image of the Pentagon (available

at [83]). Partitioning the pixels of its Fourier transform into 101 sections, each

corresponding to a different slice of Fourier space, we then multiplied each section by

a different (noisy) phase factor to simulate phase errors. Specifically, we generated a

vector of 101 iid random phases and added complex Gaussian noise, normalizing each

resultant entry. Since the phase error recovery procedure only guarantees recovery of

the true phase errors up to a modulation and global phase factor, we then randomly

modulated this vector and multiplied by a random phase; pointwise multiplying

each entry of this vector by the corresponding slice of the image’s Fourier transform

then simulates the output of the first four bullets of the SAR image reconstruction

procedure. Taking the actual phase error vector to be all ones (without loss of
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Figure 8: The Fourier domain is partitioned into 101 lines and each lines is given a simulated (noisy) phase error.
If the phase errors are known up to a modulation and global phase factor, then Algorithm 5 recovers
the modulation by maximizing total variation of the image. (a) The (approximate) probability that the
estimated modulation is not the true modulation (as a function of average noise magnitude); here, a
sample of 100 simulations provide the estimated probability for each noise level in {0, 0.1, 0.2, . . . , 1}. (b)
The relative error in image reconstruction using phase errors estimated by Algorithm 5 suggests stability
to noise; depicted are clusters of 30 simulations at varying noise levels.

generality), we then gave the generated phase error estimates and noisy Fourier data

to Algorithm 5, the results of which are depicted in Figures 8 and 9.

As we can see, the demodulation portion of this algorithm is particularly stable

to noise; indeed, Figure 8(a) suggests that the total variation method of modulation

recovery has a success rate of over 90% for noise with average magnitude of up to

0.3. Also, Figure 8(b) shows that relative error in image reconstruction behaves

well with the input noise. Figure 9 illustrates how the total variation of the image

under all possible modulations is affected by differing levels of noise, as well as the

resultant quality in image recovery. Indeed, the noiseless case demonstrates that

the true modulation is easily implicated by a large total variation. When the noise

level is 0.3 in average magnitude, the true modulations can still be detected by

maximizing total variation, but the sidelobes are rising and the noise is somewhat

noticeable in the resulting image reconstruction. Finally, using noise with average

magnitude of 0.7 raises the sidelobes so high that the true modulation can no longer

be detected. As Figure 8(a) indicates, we can expect the true modulation to be

successfully detected only 50% of the time with this level of noise.
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Figure 9: Reconstructing a SAR image from noisy Fourier data. The Fourier domain is partitioned into 101 lines
and the image information on each line is given a random (noisy) global phase. The resultant simulated
phase error vector is then modulated with a random modulation index. To recover the modulation, the
image is reconstructed using all possible modulations and that which yields maximal total variation in the
reconstruction is taken; the global phase factor is then estimated to reconstruct the image with this choice
of modulation (see Algorithm 5). At top right is a SAR image of the Pentagon (noiseless); the images
beneath are reconstructions with average noise magnitudes 0.3 and 0.7, respectively. Each plot at left
shows the total variation of the corresponding image as a function of modulation index. For the noiseless
case, the maximizing modulation 57 is indeed the true modulation. With noise at average magnitude of
0.3, the total variation is again maximized at the true modulation index (13). In the case of average noise
magnitude 0.7, the modulation which maximizes the total variation is 12, while the true modulation is 45,
resulting in the unsuccessful recovery displayed. The relative error in the reconstructed images at noise
levels of 0.3 and 0.7 above are 0.0410 and 0.1667, respectively.
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VI. Conclusion

In this thesis we made significant theoretical progress on the phase retrieval problem.

First, we analyzed what it means for an ensemble of intensity measurements to be

injective and stable. In doing so, we characterized injectivity in both the real and

complex cases, leading to the conjecture that 4M − 4 intensity measurements are

necessary and sufficient to successfully determine an M -dimensional complex sig-

nal (up to a global phase). We made certain contributions toward a proof of this

conjecture, to include a deterministic construction of an injective ensemble using

4M − 4 intensity measurements. Next, we devised a theory of almost injectivity to

characterize ensembles of intensity measurements that enable signal recovery on a

dense subset of CM . This led to a discussion of the computational limits of phase

retrieval, where we analyzed computational complexity by drawing connections be-

tween phase retrieval and the well-known subset sum problem. We concluded with

a stability analysis, where we developed stronger versions of the characterizations

of injectivity in the presence of stochastic noise as well as a new condition which

strengthens the complement property in the worst case.

The second major contribution of this thesis was to develop a new multistatic

methodology for synthetic aperture radar to resolve phase errors. Drawing mo-

tivation from the phase retrieval problem, we related the phase error problem to

interferometric phase recovery techniques. Using graphs to organize the SAR data,

we then leveraged angular synchronization to reconstruct the phase errors. Simu-

lations suggest that image reconstruction based on this approach is stable to noise,

and desirable results can be achieved using few aircraft.

Aside from this thesis, theoretical progress on the phase retrieval problem is

currently an active area of research. For instance, the 4M − 4 Conjecture, although

widely believed, still lacks a complete proof. The following summarizes what is

currently known about the conjecture:
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• The conjecture holds for M = 2 and M = 2m+ 1, m = 1, 2, 3, . . . [38] (see also

Section 2.1 of this thesis).

• IfN < 4M−2α(M−1)−3, thenA is not injective [62]; here, α(M−1) ≤ log2M

denotes the number of 1’s in the binary expansion of M − 1.

• For each M ≥ 2, there exists an ensemble Φ of N = 4M − 4 measurement

vectors such that A is injective [17] (see also Section 2.3 of this thesis).

• If N ≥ 4M − 4, then A is injective for generic Φ [38] (cf. [8]).

Furthermore, there remains a fundamental lack of understanding of injectivity in

the complex case. Although injectivity has been characterized in this case (see Sec-

tions 2.1 and 2.2 of this thesis), formulating sufficient conditions for injectivity in the

complex case which can be verified in finite time remains a subject for future work.

Characterizing almost injectivity for complex ensembles is also an open problem,

and a stability analysis for phase retrieval in this setting is still necessary.

The phase error problem in synthetic aperture radar similarly requires future

work. In particular, alternative ways of relaxing the feasibility problem (50) to en-

able the use of convex programming techniques is highly desirable. If this is not

possible, the process described in Section 5.4 requires a performance guarantee, and

it may also be improved upon. Indeed, the intermediate step of cycle synchroniza-

tion to link the two graphs G and G′ is not very democratic; an alternative method

that simultaneously uses information from all available cycles in G′ might improve

efficiency and stability of the entire algorithm. Meanwhile, the phase error recov-

ery algorithm presented in this thesis is in need of a feasibility assessment to better

understand the possibility of real-world implementation in SAR imaging systems.

For example, what types of (realistic) aircraft flight patterns enable the encoding of

multistatic SAR data using circulant graphs? Also, are there other types of graphs,

which may be more easily implementable, that exhibit the same phase error recovery

characteristics? In this thesis, we assumed that we knew when an aircraft’s bearing
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vector bisects the bearing vectors of two other aircraft—how stable is this assump-

tion to fluctuations in the aircraft position? Further issues concerning the effect of

crosstalk in multistatic SAR systems need to be addressed as well, and questions

regarding simplifying assumptions should be considered (e.g., two-dimensional tar-

get scenes). One should account for all of these factors, not only in discerning the

feasibility of the multistatic methodology we present, but also in competing with

state of the art phase error–correction algorithms, which do not require a multistatic

system but might prove to be less reliable.

126



Appendix A.

Here, we verify that we can differentiate under the integral sign in the proof of

Theorem 4.10 from Section 4.2.

Lemma A.1. Consider the probability density function defined by

f(y; θ) =
1

(2πσ2)N/2
e−‖y−A(θ)‖2/2σ2 ∀y ∈ RN .

Then for every function g : RN → R with finite second moment

∫
RN
g(y)2f(y; θ)dy <∞ ∀θ ∈ Ω,

we can differentiate under the integral sign:

∂

∂θi

∫
RN
g(y)f(y; θ)dy =

∫
RN
g(y)

∂

∂θi
f(y; θ)dy.

Proof. First, we adapt the proof of Lemma 5.14 in [72] to show that it suffices to

find a function b(y; θ) with finite second moment such that, for some ε > 0,∣∣∣∣f(y; θ + zδi)− f(y; θ)

zf(y; θ)

∣∣∣∣ ≤ b(y; θ) ∀y ∈ RN , θ ∈ Ω, |z| < ε, z 6= 0 (51)

where δi denotes the ith identity basis element in R2M . Indeed, by applying the

Cauchy-Schwarz inequality over f -weighted L2 space, we have

∫
RN
|g(y)|b(y; θ)f(y; θ)dy

≤
(∫

RN
g(y)2f(y; θ)dy

)1/2(∫
RN
b(y; θ)2f(y; θ)dy

)1/2

<∞
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and so the dominated convergence theorem gives

∫
RN
g(y)

∂

∂θi
f(y; θ)dy =

∫
RN

lim
z→0

(
g(y)

f(y; θ + zδi)− f(y; θ)

zf(y; θ)

)
f(y; θ)dy

= lim
z→0

∫
RN

(
g(y)

f(y; θ + zδi)− f(y; θ)

zf(y; θ)

)
f(y; θ)dy

= lim
z→0

1

z

(∫
RN
g(y)f(y; θ + zδi)dy −

∫
RN
g(y)f(y; θ)dy

)
=

∂

∂θi

∫
RN
g(y)f(y; θ)dy.

In pursuit of such a function b(y; θ), we first use the triangle and Cauchy-Schwarz

inequalities to get∣∣∣∣f(y; θ + zδi)− f(y; θ)

zf(y; θ)

∣∣∣∣ =
1

|z|

∣∣∣e− 1
2σ2

(
‖y−A(θ+zδi)‖2−‖y−A(θ)‖2

)
− 1
∣∣∣

=
1

|z|

∣∣∣e− 1
2σ2

(
‖A(θ+zδi)‖2−‖A(θ)‖2−2〈y,A(θ+zδi)−A(θ)〉

)
− e

1
σ2
〈y,A(θ+zδi)−A(θ)〉 + e

1
σ2
〈y,A(θ+zδi)−A(θ)〉 − 1

∣∣∣
≤ 1

|z|

(
e

1
σ2
〈y,A(θ+zδi)−A(θ)〉

∣∣∣e− 1
2σ2

(
‖A(θ+zδi)‖2−‖A(θ)‖2

)
− 1
∣∣∣

+
∣∣∣e 1

σ2
〈y,A(θ+zδi)−A(θ)〉 − 1

∣∣∣)
≤ 1

|z|

(
e

1
σ2
‖y‖‖A(θ+zδi)−A(θ)‖

∣∣∣e− 1
2σ2

(
‖A(θ+zδi)‖2−‖A(θ)‖2

)
− 1
∣∣∣

+
∣∣∣e 1

σ2
‖y‖‖A(θ+zδi)−A(θ)‖ − 1

∣∣∣), (52)

Denote c(z; θ) := 1
σ2‖A(θ + zδi)−A(θ)‖. Since (est − 1)/t ≤ sest whenever s, t ≥ 0,

we then have

|ec(z;θ)‖y‖ − 1|
|z|

=
c(z; θ)

|z|
· e

c(z;θ)‖y‖ − 1

c(z; θ)
≤ c(z; θ)

|z|
‖y‖ec(z;θ)‖y‖.
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Also by l’Hospital’s rule, there exist continuous functions C1 and C2 on the real line

such that

C1(z; θ) =
c(z; θ)

|z|
, C2(z; θ) =

1

|z|

∣∣∣e− 1
2σ2

(
‖A(θ+zδi)‖2−‖A(θ)‖2

)
− 1
∣∣∣, ∀z 6= 0.

Thus, continuing (52) gives∣∣∣∣f(y; θ + zδi)− f(y; θ)

zf(y; θ)

∣∣∣∣ ≤ (C1(z; θ)‖y‖+ C2(z; θ)
)
ec(z;θ)‖y‖.

Now for a fixed ε, take Cj(θ) := sup|z|<εCj(z; θ) and c(θ) := sup|z|<ε c(z; θ), and

define

b(y; θ) :=
(
C1(θ)‖y‖+ C2(θ)

)
ec(θ)‖y‖.

Since Cj(θ) and c(θ) are suprema of continuous functions over a bounded set, these

are necessarily finite for all θ ∈ Ω. As such, this choice for b satisfies (51). It remains

to verify that b has a finite second moment. To this end, let B(R(θ)) denote the ball

of radius R(θ) centered at the origin (we will specify R(θ) later). Then

∫
RN
b(y; θ)2f(y; θ)dy =

∫
B(R(θ))

b(y; θ)2f(y; θ)dy +

∫
RN\B(R(θ))

b(y; θ)2f(y; θ)dy

≤
(
C1(θ)R(θ) + C2(θ)

)2

e2c(θ)R(θ)

+
1

(2πσ2)N/2

∫
RN\B(R(θ))

(
C1(θ)‖y‖+ C2(θ)

)2

e2c(θ)‖y‖− 1
2σ2
‖y−A(θ)‖2dy.

(53)

From here, we note that whenever ‖y‖ ≥ 2‖A(θ)‖+ 8σ2c(θ), we have

‖y −A(θ)‖2 ≥ ‖y‖2 − 2‖y‖‖A(θ)‖+ ‖A(θ)‖2

≥
(

2‖A(θ)‖+ 8σ2c(θ)
)
‖y‖ − 2‖y‖‖A(θ)‖+ ‖A(θ)‖2

≥ 8σ2c(θ)‖y‖.
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Rearranging then gives 2c(θ)‖y‖ ≤ 1
4σ2‖y −A(θ)‖2. Also let h(θ) denote the larger

root of the polynomial

p(x; θ) := 2C1(θ)2
(
x2 − 2‖A(θ)‖x+ ‖A(θ)‖2

)
−
(
C1(θ)x+ C2(θ)

)2

,

and take h(θ) := 0 when the roots of p(x; θ) are not real. (Here, we are assuming

that C1 > 0, but the proof that (53) is finite when C1 = 0 quickly follows from the

C1 > 0 case.) Then (C1(θ)‖y‖+C2(θ))2 ≤ 2C1(θ)2‖y−A(θ)‖2 whenever ‖y‖ ≥ h(θ),

since by the Cauchy-Schwarz inequality,

2C1(θ)2‖y −A(θ)‖2 −
(
C1(θ)‖y‖+ C2(θ)

)2

≥ p(‖y‖; θ) ≥ 0,

where the last step follows from the fact that p(x; θ) is concave up. Now we continue

by taking R(θ) := max{2‖A(θ)‖+ 8σ2c(θ), h(θ)}:

∫
RN\B(R(θ))

(
C1(θ)‖y‖+ C2(θ)

)2

e2c(θ)‖y‖− 1
2σ2
‖y−A(θ)‖2dy

≤
∫
RN\B(R(θ))

2C1(θ)2‖y −A(θ)‖2e−
1

4σ2
‖y−A(θ)‖2dy

≤
(
2π(
√

2σ)2
)N/2 · 2C1(θ)2

∫
RN
‖x‖2 1

(2π(
√

2σ)2)N/2
e−‖x‖

2/2(
√

2σ)2dx,

where the last step comes from integrating over all of RN and changing variables

y −A(θ) 7→ x. This last integral calculates the expected squared length of a vector

in RN with independent N (0, 2σ2) entries, which is 2Nσ2. Thus, substituting into

(53) gives that b has a finite second moment.
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Appendix B.

Here, we compute the phase error vector ω := {ωi}i∈V ⊆ T from a solution to a

relaxed version of the feasibility problem (50): for some fixed tolerance ε > 0,

Find X ∈ Hn×n such that rank(X) = 1

and ‖PS⊥X‖2
HS +

n−1∑
i=0

∣∣1− 〈X, δiδ∗i 〉HS

∣∣2 ≤ ε.

Note that the outer product of any modulation of the optimal ω is necessarily feasible,

and so relaxing the problem to make it convex implies that any convex combination

of such modulations is feasible for the relaxed version:

Theorem B.1. Suppose ω : Zn → T such that ωω∗ solves a convex relaxation of

the feasibility problem (50). Then
∑n−1

i=0 λiE
iωω∗E−i is also a solution for every

{λi}n−1
i=0 ⊆ R such that

∑n−1
i=0 λi = 1.

To be clear, the modulation operator E in Theorem B.1 is the n× n diagonal

matrix whose kth diagonal entry is e2πik/n. Before proving the theorem, however, we

first consider some intermediate results.

Lemma B.2. Let G = (V,E) be a circulant graph with n vertices such that n is an

odd prime and ω : V → T. Then ‖PS⊥(Eωω∗E∗)‖HS = ‖PS⊥(ωω∗)‖HS.

Proof. By Lemma 5.7, G decomposes into copies of the n-cycle. For each resultant

n-cycle C, define the matrices XC and X−C as in (49) and recall the subspace S =

span{XC , X−C}C⊆G +T , where T := {X ∈ Hn×n : X[i, j] = 0 whenever A[i, j] = 1}.

Since no two n-cycles in the decomposition of G share an edge and each nonzero

entry of XC and X−C is of unit-modulus, it follows that { 1√
n
XC ,

1√
n
X−C}C⊆G is an

orthonormal set. Noting that for i, j ∈ V we have

S = span
(
{XC , X−C}C⊆G ∪ {δiδ∗j}i 6↔j

)
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then implies that the set { 1√
n
XC ,

1√
n
X−C}C⊆G∪{δiδ∗j}i 6↔j forms an orthonormal basis

for S.

At this point, note that the Pythagorean Theorem gives

‖ωω∗‖2
HS = ‖PS(ωω∗)‖2

HS + ‖PS⊥(ωω∗)‖2
HS,

‖Eωω∗E∗‖2
HS = ‖PS(Eωω∗E∗)‖2

HS + ‖PS⊥(Eωω∗E∗)‖2
HS,

and so to establish the result it suffices to show the equalities ‖Eωω∗E∗‖HS =

‖ωω∗‖HS and ‖PS(Eωω∗E∗)‖HS = ‖PS(ωω∗)‖HS. To this end, we first obtain

‖Eωω∗E∗‖2
HS = Tr[(Eωω∗E∗)∗Eωω∗E∗] = Tr[Eωω∗E∗Eωω∗E∗]

= Tr[E∗Eωω∗E∗Eωω∗] = Tr[(ωω∗)∗ωω∗] = ‖ωω∗‖2
HS,

at which point taking square roots gives the former equality. For the latter, we start

by again applying the Pythagorean Theorem using the basis for S given above:

‖PS(Eωω∗E∗)‖2
HS =

∑
C⊆G

(
|〈Eωω∗E∗, 1√

n
XC〉HS|2 + |〈Eωω∗E∗, 1√

n
X−C〉HS|2

)
+
∑
i 6↔j

|〈Eωω∗E∗, δiδ∗j 〉HS|2. (54)

To simplify this expression, notice that

〈Eωω∗E∗, XC〉HS = Tr[X∗CEωω
∗E∗] = Tr[E∗X∗CEωω

∗] = 〈ωω∗, E∗XCE〉HS,

where (E∗X∗CE)[i, j] = e2πi(j−i)/nXC [i, j]. A similar computation for X−C yields

(E∗X∗−CE)[i, j] = e2πi(i−j)/nX−C [i, j], and so it follows that

〈Eωω∗E∗, X±C〉HS = 〈ωω∗, E∗X±CE〉HS = e±2πi(j−i)/n〈ωω∗, X±C〉HS. (55)
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On the other hand, since E∗δi = e−2πii/nδi, we have

〈Eωω∗E∗, δiδ∗j 〉HS = Tr[(δiδ
∗
j )
∗Eωω∗E∗] = Tr[(E∗δiδ

∗
jE)∗ωω∗]

= e2πi(i−j)/n Tr[(δiδ
∗
j )
∗ωω∗] = e2πi(i−j)/n〈ωω∗, δiδ∗j 〉HS (56)

for any i, j ∈ {0, . . . , n− 1}. Substituting (55) and (56) into (54) then yields

‖PS(Eωω∗E∗)‖2
HS =

∑
C⊆G

(
|〈ωω∗, 1√

n
XC〉HS|2 + |〈ωω∗, 1√

n
X−C〉HS|2

)
+
∑
i 6↔j

|〈ωω∗, δiδ∗j 〉HS|2

= ‖PS(ωω∗)‖2
HS,

which is the desired result.

Lemma B.3. Let G = (V,E) be a circulant graph with n vertices such that n is an

odd prime and ω : V → T. For any fixed ε > 0, suppose that

‖PS⊥(ωω∗)‖2
HS +

n−1∑
i=0

∣∣1− 〈ωω∗, δiδ∗i 〉HS

∣∣2 ≤ ε.

Then

∥∥∥PS⊥ n−1∑
i=0

λiE
iωω∗E−i

∥∥∥2

HS
+

n−1∑
i=0

∣∣∣1− 〈n−1∑
j=0

λjE
jωω∗E−j, δiδ

∗
i

〉
HS

∣∣∣2 ≤ ε

for every {λi}n−1
i=0 ⊆ R such that

∑n−1
i=0 λi = 1.
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Proof. Suppose {λi}n−1
i=0 ⊆ R such that

∑n−1
i=0 λi = 1 and let Y :=

∑n−1
i=0 λiE

iωω∗E−i.

By the triangle inequality we have

‖PS⊥Y ‖HS ≤
n−1∑
i=0

λi‖PS⊥(Eiωω∗E−i)‖HS

= ‖PS⊥(Eiωω∗E−i)‖HS

n−1∑
i=0

λi = ‖PS⊥(Eiωω∗E−i)‖HS,

and so applying Lemma B.2 yields ‖PS⊥Y ‖HS ≤ ‖PS⊥(ωω∗)‖HS. Moreover, for any

i ∈ {0, . . . , n− 1} we have

〈Y, δiδ∗i 〉HS =
n−1∑
j=0

λj〈Ejωω∗E−j, δiδ
∗
i 〉HS

=
n−1∑
j=0

λj〈ωω∗, E−jδiδ∗iEj〉HS

= 〈ωω∗, δiδ∗i 〉HS

n−1∑
j=0

λj = 〈ωω∗, δiδ∗i 〉HS,

and so it follows that

‖PS⊥Y ‖2
HS +

n−1∑
i=0

∣∣1− 〈Y, δiδ∗i 〉HS

∣∣2
≤ ‖PS⊥(ωω∗)‖2

HS +
n−1∑
i=0

∣∣1− 〈ωω∗, δiδ∗i 〉HS

∣∣2 ≤ ε,

completing the proof.

Proof of Theorem B.1. Suppose {λi}n−1
i=0 ⊆ R such that

∑n−1
i=0 λi = 1 and let Y :=∑n−1

i=0 λiE
iωω∗E−i. Since Y is a convex combination of solutions to the feasibility

problem (50), it is feasible for any convex relaxation provided the norm and diagonal

constraints are satisfied. To this end, note that Lemma B.3 implies that ‖PS⊥Y ‖2
HS+∑n−1

i=0

∣∣1− 〈Y, δiδ∗i 〉HS

∣∣2 ≤ ε, and so Y is feasible.

134



To reiterate, it is not clear how to obtain a solution to the feasibility prob-

lem (50); indeed, properly relaxing it to a convex feasibility problem is still an open

problem. Assuming such a relaxation exists, recovering the desired phase vector from

a solution to the relaxed version is possible. To see this, let ω be a given vector of

unknown phase errors and suppose the matrix Y solves a convex relaxation of (50)

(without noise) for some ε > 0. Then, as Theorem B.1 indicates, we know that

Y =
∑n−1

i=0 λiE
iωω∗E−i for some {λi}n−1

i=0 ⊆ R such that
∑n−1

i=0 λi = 1. In order to

recover the actual phase vector ω, we therefore need some way of decomposing the

matrix Y . Notice that if the vectors {Eiω}n−1
i=0 are mutually orthogonal, then Y is

diagonalizable by the spectral theorem. Such a diagonalization would have the effect

of arranging normalized versions of {Eiω}n−1
i=0 as the columns of some matrix, which

we could then analyze. For this approach, we require the following lemma:

Lemma B.4. Let ω : Zn → T be a vector of unit-modulus phases. Then the set of

modulations { 1√
n
Eiω}n−1

i=0 is orthonormal.

Proof. For any i, j ∈ {0, . . . , n− 1}, consider the inner-product

〈Eiω,Ejω〉HS = 〈ω,Ej−iω〉HS = Tr[(Ej−iω)∗ω] = ω∗Ei−jω =
n−1∑
k=0

e2πi(j−i)k/n|ωk|2.

Since |ωk| = 1 for all k ∈ {0, . . . , n− 1}, the geometric sum formula then yields

〈Eiω,Ejω〉HS =

n if i = j

e2πi(j−i)−1
e2πi(j−i)/n−1

if i 6= j,

from which it follows that

〈 1√
n
Eiω, 1√

n
Ejω〉HS =

1 if i = j

0 if i 6= j.
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For the matrix Y above, the result of Lemma B.4 implies the spectral decom-

position

Y =
n−1∑
i=0

λi(E
iω)(Eiω)∗ = V (nΛ)V ∗,

where V is the matrix whose ith column is the vector 1√
n
Eiω for each i = 0, . . . , n−1

and Λ is the diagonal matrix whose entries are Λ[i, i] = λi. Note that we may

arbitrarily permute the columns of V without changing the matrix Y . Similarly,

multiplying each column by an arbitrary phase in T has no effect on Y , and so the

most general expression for a solution to (50) is of the form Y = (V PΨ)(nΛ)(V PΨ)∗

for some permutation matrix P and diagonal matrix of phases Ψ.

Now consider the diagonal matrix W defined by W [i, i] = ωi for each i =

1, . . . , n − 1. If w denotes the n-vector whose coordinates are all 1, then we may

decompose V in terms of W and the n-dimensional inverse DFT matrix F :

V = 1√
n
W
[
E0w E1w · · · En−1w

]
= WF.

Hence, columns of the matrix U := WFPΨ are each of the form { 1√
n
e2πize2πik/nωk}n−1

k=0

for some z ∈ R/Z, i.e., the columns of U are modulated versions of ω, multiplied

by distinct global phases. Since modulation and global phase are the two degrees

of freedom associated with recovering the vector ω (see Lemma 5.8), it follows that

any column of U (properly scaled) yields an acceptable estimate for ω.

In the presence of noise, we desire a more stable solution than simply pulling

any column from U . Indeed, since any column of U is acceptable, it makes sense

that each column would be equally perturbed by noise. To leverage this, we may

attempt to “integrate” over all columns in order to average out the effect of noise.

This is a common approach to stable algorithms and is motivated by the Central

Limit Theorem. One such way of doing this is summarized in Algorithm 6.
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Algorithm 6

Input: Matrix solution Y = U(nΛ)U∗ to a relaxed version of problem (50)
Output: Vector ω of phases such that Y =

∑n−1
i=0 λiE

iωω∗E−i for some convex sum∑n−1
i=0 λi = 1

Fix an initial estimate ω̂ ←
√
nu0, where u0 is the first column of U

Fix a threshold ε > 0
Initialize an n× n matrix P of zeros
for i, j = 0 to n− 1 do

if |1− 1√
n
|〈Eiω, uj〉|| ≤ ε then

P [i, j]← 1 {Detect the permutation matrix which orders the

columns of U as consecutive modulations of ω̂}
end if

end for
Compute A←

√
n(UP−1) ◦ F ∗ {F ∗ denotes the n× n DFT matrix;

◦ is the Hadamard matrix product}
Compute the singular value decomposition QΣR∗ ← SVD[A]
Compute the updated estimate ω̂ ← q0, where q0 is the first column of Q
Output: ω = {ω̂i/|ω̂i|}n−1

i=0

This algorithm is quite natural considering the above discussion in which we

decomposed the matrix Y . Indeed, since U = V PΨ for some permutation matrix P

and diagonal matrix Ψ of phases, where V = WF is in terms of the n × n inverse

DFT, the matrix A in Algorithm 6 approximates the outer product ωψT , where ψ is

the diagonal of Ψ. Thus, the leading column of Q in the singular value decomposition

is the desired vector of phase errors from the best low rank approximation for A.
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Appendix C.

In the spirit of reproducible research [45], we provide here the code used to run

simulations in Chapter V. All data was acquired using versions of the code below.

1%% I t e r a t i v e Angular Synchron izat ion

% Determines a phase e r r o r vec to r (up to g l o b a l phase and modulation )

3% from nested r e l a t i v e phase in fo rmat ion . The f i r s t l e v e l o f

% r e l a t i v e phase i s encoded as edge measurements in a graph G; the

5% second l e v e l i s encoded as the edge measurements in a r e l a t e d graph

% Gˆprime . The ver tex measurements in Gˆprime are determined , which

7% then become the edge measurements in G. The r e s u l t a n t ver tex

% measurements in G are the e n t r i e s o f the phase e r r o r vec to r .

9% Based on angular synchron izat ion , Amit S inger (2011) .

11

13n = 101 ; % Spec i f y number o f v e r t i c e s in G ( must be prime >2;

% t h i s ensure s G decomposes in to n−c y c l e s )

15c = 10 ; % Spec i f y number o f n−c y c l e s in the decompos it ion o f

% G ( must be <n/2 so that G can be d i r e c t e d )

17no i s e = 0 . 1 ; % Spec i f y magnitude o f a d v e r s a r i a l no i s e ( must be in

% [ 0 , 1 ] ) ; 0 i s no no i se , 1 i s f u l l N(0 , 1 ) no i s e

19

f i r s t co lumndone = 0 ;

21while f i r s t co lumndone == 0

r = zeros (1 , n ) ; % Generates a random vecto r r o f 0 s

23i n d i c e s = randperm(n−1) ; % and 1 s which w i l l generate the

for k = 2 : n % adjacency matrix o f G; r w i l l

25i f i n d i c e s (k−1) <= c % have c nonzero e n t r i e s , each

r ( k ) = 1 ; % corre spond ing to a d i s t i n c t c y c l e

27end % in G

end

29revr = zeros (n , 1 ) ;

r ev r (1 ) = r (1 ) ;

31for k = 2 : n

revr ( k ) = r (n−k+2) ;

33end

i f r ∗ r evr == 0 % Ensures r w i l l generate a d i r e c t e d

35f i r s t co lumndone = 1 ; % graph G

end

37end
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39I = eye (n) ;

P = zeros (n) ;

41A = zeros (n) ;

43for k = 1 : n % Bui lds the permutation matrix

i f k < n % used to generate the

45P( : , k ) = P( : , k ) + I ( : , k+1) ; % adjacency matrix o f G

else

47P( : , k ) = P( : , k ) + I ( : , 1 ) ;

end

49end

51for k = 1 : n % Generates the adjacency matrix

A( : , k ) = A( : , k ) + Pˆ(k−1)∗ r ’ ; % A of G; A i s c i r c u l a n t by

53end % co ns t r uc t i on

55Ac = zeros (n , n , c ) ;

57count = 0 ;

rc = zeros (1 , n ) ;

59for k = 2 : n % Generates the adjacency matr i ce s o f each

i f r ( k ) == 1 % c y c l e in G; the kth c y c l e adjacency

61count = count + 1 ; % matrix i s s to r ed as Ac ( : , : , k )

rc ( k ) = 1 ;

63for j = 1 : n

Ac ( : , j , count ) = Ac ( : , j , count ) + Pˆ( j−1)∗ rc ’ ;

65end

rc = 0∗ rc ;

67end

end

69

r1 = rand (n , 1 ) ;

71omega1 = exp(2∗pi∗1 i ∗ r1 ) ; % Generates a random phase e r r o r vec to r ;

% t h i s i s the t rue ver tex data f o r G

73exact = omega1∗omega1 ’ ;

75Xc = zeros (n , n , c ) ;

77for k = 1 : c % Generates the t rue weighted

Xc ( : , : , k ) = Ac ( : , : , k ) .∗ exact ; % adjacency matr i ce s f o r each

79end % c y c l e in G
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81sigma = zeros (n , c ) ;

83for k = 1 : c % Lines 85−93 p u l l the nonzero

for j = 1 : n % e n t r i e s from each Xc and

85for m = 1 : n % organ i z e them in vec to r

i f Xc( j ,m, k ) ˜= 0 % form ; f o r the kth cyc le ,

87sigma ( j , k ) = Xc( j ,m, k ) ; % sigma ( : , k ) i s the nonzero

end % data from Xc ( : , : , k )

89end

end

91end

93Sigma = zeros (n , c ) ;

95for k = 1 : c % Reorders the nonzero data from each

s h i f t = 0 ; % Xc so that conse cu t i v e e n t r i e s

97x = 0 ; % come from conse cu t i v e edges in

while s h i f t == 0 % each c y c l e o f Gˆprime ; the kth

99x = x+1; % column o f Sigma r e p r e s e n t s the

i f Ac(1 , x , k ) == 1 ; % true edge measurements f o r the kth

101s h i f t = x−1; % c y c l e ; t h i s data i s the r e c e i v e d

end % r e l a t i v e phases uncorrupted by

103end % no i s e

for j = 1 : n

105Sigma ( j , k ) = sigma(1+mod( ( j−1)∗ s h i f t , n ) , k ) ;

end

107end

109Sigma1 = zeros (n , c ) ;

111for k = 1 : c

Sigma1 ( : , k ) = Sigma ( : , k ) + no i s e ∗(randn(n , 1 )+1 i ∗randn(n , 1 ) ) ;

113Sigma1 ( : , k ) = Sigma1 ( : , k ) . / abs ( Sigma1 ( : , k ) ) ;

end % Adds N(0 , 1 ) no i s e to the input s i g n a l accord ing to

115% the prede f i n ed parameter no i s e

117data = zeros (n , n , c ) ;

119for k = 1 : c % Creates the weighted adjacency matr i ce s f o r each

for j = 1 : n % c y c l e in Gˆprime ; nested r e l a t i v e phases f o r the

121i f j < n % kth c y c l e are s to r ed in data ( : , : , k )

data ( j , j +1,k ) = Sigma1 ( j , k ) ∗conj ( Sigma1 ( j +1,k ) ) ;

123else
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data ( j , 1 , k ) = Sigma1 ( j , k ) ∗conj ( Sigma1 (1 , k ) ) ;

125end

end

127end

129

%

131% From t h i s po int forward the a lgor i thm i s r e c o n s t r u c t i n g the phase e r r o r

% vecto r from noise−corrupted , nested r e l a t i v e phase in fo rmat ion ; in

133% prac t i c e , t h i s i s where r e a l data w i l l en te r the a lgor i thm

%

135

137sigma1 = zeros (n , c ) ;

139for k = 1 : c % Angular synchron i za t i on ; the

[V, ˜ ] = eig ( data ( : , : , k )+data ( : , : , k ) ’ ) ; % columns o f sigma1 are

141sigma1 ( : , k ) = V( : , n ) . / abs (V( : , n ) ) ; % es t imate s o f cor re spond ing

end % columns o f Sigma (up to

143% d i s t i n c t g l o b a l phases )

145% To check accuracy , note that

% ( sigma1 ( : , k ) ∗ sigma1 ( : , k ) ’ )−(Sigma ( : , k ) ∗Sigma ( : , k ) ’ )

147% should be a matrix o f z e r o s f o r each k ( without no i s e )

149sigma2 = zeros (n , c ) ;

151for k = 1 : c % Reorders the input data such that

s h i f t = 0 ; % conse cu t i v e e n t r i e s correspond to

153x = 0 ; % conse cu t i v e rows in the weighted

while s h i f t == 0 % adjacency matr i ce s o f each c y c l e

155x = x+1; % Gˆprime ; note t h i s i s the i n v e r s e

i f Ac(1 , x , k ) == 1 ; % proce s s to that performed above

157s h i f t = x−1;

end

159end

for j = 1 : n

161sigma2(1+mod( ( j−1)∗ s h i f t , n ) , k ) = sigma1 ( j , k ) ;

end

163end

165

es t imate = zeros (n , n , c ) ;

141



167

for k = 1 : c

169es t imate ( : , : , k ) = diag ( sigma2 ( : , k ) ) ∗Ac ( : , : , k ) ;

end % Generates weighted adjacency m a t r i c e s f o r each c y c l e

171% in G; the kth c y c l e i s s to r ed as es t imate ( : , : , k )

173s = zeros ( c ) ;

175count1 = 0 ;

count2 = 0 ;

177

for k = 2 : n % Generates a matrix s o f exponents ;

179i f r ( k ) == 1 % exponent s (k , j ) r e p r e s e n t s the

count1 = count1 + 1 ; % power such that es t imate ( : , : , k )

181for j = 2 : n % and est imate ( : , : , j ) ˆ s (k , j )

i f r ( j ) == 1 % have common support ; note that

183count2 = count2 + 1 ; % s (k , j ) s ( j , k ) =1(mod n)

for m = 1 : n

185i f mod( ( k−1)∗(m−1) ,n ) == 1

i n v e r s e = m−1;

187end

end

189s ( count2 , count1 ) = mod( ( j−1)∗ i nve r s e , n ) ;

end

191end

count2 = 0 ;

193end

end

195

% Below ( commented out ) i s an a l t e r n a t i v e way o f computing the matrix s

197

% s1 = ze ro s ( c ) ;

199%

% f o r k = 1 : c

201% f o r j = 1 : c

% f o r power = 1 : n

203% i f Ac ( : , : , j ) ˆpower == Ac ( : , : , k )

% s1 (k , j ) = power ;

205% end

% end

207% end

% end

209
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alpha = zeros ( c ) ;

211

for k = 1 : c

213for j = 1 : c

sumsum = sum(sum( e s t imate ( : , : , j ) ˆ( s (k , j ) ) .∗ conj ( e s t imate ( : , : , k ) ) ) ) ;

215alpha (k , j ) = sumsum/abs (sumsum) ;

end % Computes phases such that

217end % alpha (k , j ) e s t imate ( : , : , k ) = est imate ( : , : , j ) ˆ s (k , j )

% f o r a l l k , j = 1 , . . . , c

219

% To check accuracy , note that

221% alpha (k , j ) ∗ es t imate ( : , : , k )−es t imate ( : , : , j ) ˆ( s (k , j ) )

% should be a matrix o f z e r o s f o r each pa i r (k , j ) ( without no i s e )

223

225%

% At t h i s point , note that we have the edge measurements f o r each c y c l e in

227% G up to d i s t i n c t g l o b a l phase f a c t o r s ; to r e c o n c i l e the se g l o b a l

% phases , observe that in the n o i s e l e s s case we have

229% alpha (k , j ) e s t imate ( : , : , k ) = est imate ( : , : , j ) ˆ s (k , j )

% and so , l e t t i n g Estimate ( : , : , k ) denote the ac tua l weighted adjacency

231% matr ices , the r e e x i s t phase f a c t o r s beta ( k ) such that

% alpha (k , j ) Estimate ( : , : , k ) / beta ( k )

233% = ( Estimate ( : , : , j ) / beta ( j ) ) ˆ s (k , j )

% from which e q u a l i t y in the n o i s e l e s s case i m p l i e s that

235% alpha (k , j ) / beta ( k ) = 1/ beta ( j ) ˆ s (k , j )

% we then immediately have the r e l a t i o n

237% beta ( k ) = alpha (k , 1 ) beta (1 ) ˆ s (k , 1 )

%

239

241beta = zeros ( c , 1 ) ;

243matrix = ( es t imate ( : , : , 1 ) == 0) + est imate ( : , : , 1 ) ;

number = prod (prod ( matrix ) ) ;

245beta (1 ) = numberˆ(−1/n) ; % Fixes beta (1 ) to be the i n v e r s e o f the

% product o f the phases in es t imate ( : , : , 1 )

247

for k = 2 : c

249beta ( k ) = alpha (k , 1 ) ∗beta (1 ) ˆ( s (k , 1 ) ) ;

end % Populates the phase vec to r beta based on alphas

251% and r e l a t i o n s h i p above us ing beta (1 )
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253XcEst = zeros (n , n , c ) ;

255for k = 1 : c

XcEst ( : , : , k ) = est imate ( : , : , k ) ∗( conj (beta ( k ) ) ) ;

257end % Generates the weighted adjacency matr i ce s o f the c y l e s in G

% such that edge measurements in a l l c y c l e s are est imated up

259% to a common g l o b a l phase f a c t o r

261A1 = zeros (n) ;

263for k = 1 : c % Generates the weighted adjacency matrix

A1 = A1 + XcEst ( : , : , k ) ; % A1 o f G (up to a g l o b a l phase )

265end

267lead = 1 ;

l e a d e r = 0 ;

269for k = 1 : n % Eigenvector method f o r

p s i = exp(2∗pi∗1 i ∗k/n) ; % angular synchron i za t i on

271H = p s i ∗A1 ; % peformed f o r each phase

[V, ˜ ] = eig (H+H’ ) ; % f a c t o r p s i

273v = abs (V( : , n ) ) − sqrt (1/n) ∗ ones (n , 1 ) ;

d i s c repancy = max(abs ( v ) ) ; % Determines the phase p s i

275i f d i sc repancy < l ead % such that the l e ad ing

l ead = di sc repancy ; % e i g e n v e c t o r o f H+H’ i s

277l e a d e r = k ; % c l o s e s t to unimodular

end

279end

281p s i = exp(2∗pi∗1 i ∗ l e a d e r /n) ; % Angular synchron i za t i on us ing the

H = p s i ∗A1 ; % optimal phase p s i generated above

283[V, ˜ ] = eig (H+H’ ) ;

285omega = V( : , n ) . / abs (V( : , n ) ) ; % Generates the est imated phase e r r o r

% vecto r omega

287

289% Last ed i t ed : 17 Feb 2014

% Edited by : Aaron A. Nelson
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%% Modulation and Global Phase Detect ion

2% Determines the best moduation and phase f a c t o r f o r r e c o n s t r u c t i n g an

% image from m u l t i s t a t i c SAR data with phase e r r o r s known up to a

4% g l o b a l phase and modulation .

6

%

8% Before running t h i s code , load a matrix X o f a SAR image .

%

10

12X = im2double (X( : , : , 1 ) ) ;

[ width he ight ] = s ize (X) ;

14

n = 101 ; % Spec i f y s i z e o f p a r t i t i o n o f the Four i e r

16% domain ; t h i s should correspond to the

% number measurements taken ( i . e . , the

18% length o f the phase e r r o r vec to r ) and

% must be prime >2 to correspond to usab le

20% c i r c u l a n t graphs

no i s e = 0 . 1 ; % Spec i f y magnitude o f no i s e ( must be in [ 0 , 1 ] ) ;

22% 0 i s no no i se , 1 i s f u l l complex N(0 , 1 ) no i s e

24mask = zeros ( width , he ight ) ;

26for k = 1 : width % P a r t i t i o n s Four i e r domain in to n s e c t i o n s

i f k <= width /2 % by ang le ; each s e c t i o n corresponds to

28x = k−1/2; % a s l i c e o f the Four i e r trans form data

else % that i s a v a i l a b l e from m u l t i s t a t i c SAR

30x = k−width−1/2;

end

32for j = 1 : he ight

i f j <= he ight /2

34y = j −1/2;

else

36y = j−height −1/2;

end

38angle = atan ( y/x ) ;

mask (k , j ) = f loor ( ( angle+pi /2) ∗n/pi ) + 1 ;

40end

end

42
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I = eye (n) ;

44

randphases = ones (n , 1 ) + no i s e ∗(randn(n , 1 )+1 i ∗randn(n , 1 ) ) ;

46randphases = randphases . / abs ( randphases ) ;

% Generates random phases c l o s e to 1 with no i s e p r o p o r t i o n a l to

48% prede f i n ed parameter no i s e ( complex N(0 , 1 ) , c ente red at 1)

50g loba lphase = randn (1 )+1 i ∗randn (1 ) ; % Generates a random g l o b a l

g loba lphase = g loba lphase /abs ( g loba lphase ) ; % phase

52

truemodulat ion = ce i l (rand∗n) ; % Generates a random modulation index

54

randphases = g loba lphase ∗ randphases .∗ f f t ( I ( : , t ruemodulat ion ) ) ;

56% Simulates the ( no i sy ) phase e r r o r vector , known up to a

% g l o b a l phase and modulation

58

X = c i r c s h i f t (X, [ f loor ( width /2) , f loor ( he ight /2) ] ) ;

60Y = f f t2 (X) ; % Centers the image around the ” o r i g i n ”

% and takes the 2D Four i e r trans form

62Ynoisy = Y.∗ randphases (mask ) ;

% Appl ies no i sy phases to each s l i c e o f the image in the Four i e r

64% domain ; t h i s s imu la t e s the input data from m u l t i s t a t i c SAR

66

%

68% From t h i s po int forward the a lgor i thm i s r e co ve r i n g the modulation and

% g l o b a l phase f a c t o r from simulated m u l t i s t a t i c SAR data cons t ruc ted

70% above ; t h i s i s where r e a l data w i l l en te r the a lgor i thm

%

72

74tvnorms = zeros (n , 1 ) ;

76for modulation = 1 : n % Determines an es t imate f o r

phases = conj ( f f t ( I ( : , modulation ) ) ) ; % the modulation by

78Ymodulated = Ynoisy .∗ phases (mask ) ; % maximizing t o t a l v a r i a t i o n

Xhat = i f f t 2 ( Ymodulated ) ; % in the image over a l l

80Xhat = abs ( Xhat ) ; % p o s s i b l e modulations

tvnorms ( modulation ) . . .

82= sum(sum(abs ( Xhat−c i r c s h i f t ( Xhat , [ 1 , 0 ] ) ) ) ) . . .

+ sum(sum(abs ( Xhat−c i r c s h i f t ( Xhat , [ 0 , 1 ] ) ) ) ) ;

84end % Note t h i s i m p l i c i t l y i g n o r e s the g l o b a l phase f a c t o r
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86[ va lue modulat ionest imate ] = max( tvnorms ) ;

% Determines the modulation index that maximizes the t o t a l v a r i a t i o n

88

phases = conj ( f f t ( I ( : , modulat ionest imate ) ) ) ; % Computes the est imated

90Ymodulated = Ynoisy .∗ phases (mask ) ; % image with the es t imate

Xhat = i f f t 2 ( Ymodulated ) ; % f o r the modulation

92

g loba lphasee s t imate = sum(sum( Xhat ) ) ;

94g l oba lphasee s t imate = g loba lphasee s t imate /abs ( g l oba lphasee s t imate ) ;

% Determines an es t imate f o r the g l o b a l phase f a c t o r ; takes the

96% est imate to be the average phase o f a l l data in the

% est imated image

98

Xhat = real ( Xhat∗conj ( g l oba lphasee s t imate ) ) ;

100% The f i n a l e s t imate f o r the image , with the est imated modulation

% and g l o b a l phase

102

g l o b a l p h a s e e r r o r = abs ( g loba lphasee s t imate−g loba lphase ) ;

104r e l a t i v e e r r o r = norm( Xhat−X) /norm(X) ;

106

% Last ed i t ed : 18 Feb 2014

108% Edited by : Aaron A. Nelson
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